Студопедия — Примеры решения задач.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Примеры решения задач.






Уравнение Бернулли без учета потерь напора (энергии)

Пример 3.1. Определить расход воды Q в трубе диаметром , имеющей плавное сужение до диаметра , если показания пьезометров: до сужения ; в сужении . Температура воды .

Решение. Составим уравнение Бернулли для сечений 1-1 и 2-2, принимая за плоскость сравнения ось трубы:

.

Учитывая, что , пренебрегая в первом приближении потерями напора, т. е. принимая , и полагая ,получим:

.

Из уравнения неразрывности расхода имеем:

.

Поскольку

; ,

находим:

.

Обозначим

.

Тогда уравнение Бернулли запишется в виде

,

откуда найдем скорость в сечении 1-1:

.

Расход воды в трубе

,

где μ – коэффициент, учитывающий уменьшение расхода вследствие потерь напора; в первом приближении принимаем μ=0,98; тогда расход будет

.

Коэффициент μ зависит от отношения диаметров и числа Рейнольдса:

;

.

Найдем скорость в сужении трубы

.

Кинематическую вязкость воды примем: (табл. П-12).

С учётом полученных данных найдем число Рейнольдса

.

По табл. П-25 находим μ =0,98. Следовательно, в первом приближении значение μ принято верно.

Искомый расход .

Замечание: Рассмотренное сужение трубы с плавными переходами от большего диаметра к малому и от малого к большому называется водомером Вентури.

Ответ: .

Пример 3.2. Определить, на какую высоту поднимается вода в трубке, один конец которой присоединён к суженному сечению трубопровода, а другой конец опущен в воду. Расход воды в трубе , избыточное давление , диаметры и .

Решение. Уравнение Бернулли для сечений 1-1 и 2-2 относительно оси трубы (потерями напора пренебрегаем) имеет вид (при )

.

Учитывая, что скорости в сечениях 1-1 и 2-2 находятся так

и ,

то после преобразований получим:

 

Полученная отрицательная высота – вакуумметрическая высота. На эту высоту и поднимается вода в трубке.

Ответ: .

 

Пример 3.3. Определить критическую скорость, отвечающую переходу от ламинарного режима к турбулентному, в трубе диаметром d = 0.03 м при движении воды и воздуха при температуре 25˚C и глицерина при температуре 20˚C.

Решение. Из формулы для критического числа Рейнольдса имеем:

.

Для воды

.

Для воздуха

.

Для глицерина

.







Дата добавления: 2015-08-27; просмотров: 12687. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия