Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Количественные экспертные оценки, их методы





  1. Непосредственная количественная оценка

Метод используется как в случае, когда надо определить значение показателя, измеряемого количественно, так и в случае, когда надо оценить степень сравнительной предпочтительности различных объектов.

В первом случае каждый из экспертов непосредственно указывает значение показателя для оцениваемого объекта. Если эксперт затрудняется указать конкретное значение показателя, он может указать диапазон, в котором лежит значение оцениваемого показателя.

Во втором случае, когда оценивается сравнительная предпочтительность объектов по тому или иному показателю, количественная оценка, указываемая экспертом, определяет степень их сравнительной предпочтительности.

  1. Метод средней точки

Метод используется, когда альтернативных вариантов достаточно много. Если через f (a1) обозначим оценку первого альтернативного варианта значения показателя, относительно которого определяется сравнительная предпочтительность объектов, через f (a2) – оценку второго альтернативного варианта, то далее эксперту предлагается подобрать третий альтернативный вариант а3, оценка которого f (a3) расположена в середине между значениями f (a1) и f (a2) и равна [(f (a1)+ f (a2)] / 2.

При этом в качестве первого и второго альтернативных вариантов целесообразно выбирать наименее и наиболее предпочтительные альтернативные варианты.

Далее эксперт указывает альтернативный вариант а4, значение которого f (a4) расположено посередине между f (a1) и f (a3), и альтернативный вариант а5, значение которого f (a5) расположен посередине между значениями f (a1) и f (a4).

Процедура завершается, когда определяется сравнительная предпочтительность всех участвующих в экспертизе альтернативных вариантов.

  1. Метод Черчмена-Акофа

Данный метод используется при количественной оценке сравнительной предпочтительности альтернативных вариантов и допускает корректировку оценок, даваемых экспертами.

В методе предполагается, что оценки альтернативных вариантов – неотрицательные числа, что если альтернативный вариант а1 предпочтительнее альтернативного варианта а2, то f (a1)> f (a2), а оценка одновременной реализации альтернативных вариантов а1 и а2 равняется f (a1)+ f (a2).

Все альтернативные варианты ранжируются по предпочтительности, и каждому из них эксперт назначает количественные оценки, как правило, в долях единицы. Далее эксперт сопоставляет по предпочтительности альтернативный вариант а1 и сумму остальных альтернативных вариантов. Если он предпочтительнее, то и значение f (a1) должно быть больше суммарного значения остальных альтернативных вариантов, в противном случае – наоборот. Если эти соотношения не выполняются, то оценки должны быть соответствующим образом скорректированы.

Если а1 менее предпочтителен, чем сумма остальных альтернативных вариантов, то он сравнивается с суммой остальных альтернативных вариантов, за исключением последнего. Если альтернативный вариант а1 на каком-то шаге оказался предпочтительнее суммы остальных альтернативных вариантов и для оценок это соотношение подтверждается, то а1 из дальнейших рассмотрений исключается.

Этот процесс продолжается до тех пор, пока последовательно не будут просмотрены все альтернативные варианты.

  1. Метод лотерей

Согласно этому методу, для любой тройки альтернативных вариантов а1, а2, а3, упорядоченных в порядке убывания предпочтительности, эксперт указывает такую вероятность p, при которой альтернативный вариант а1 встречается с вероятностью p, а альтернативный вариант а3 – с вероятностью (1-р).

На основании последовательной оценки сравнительной предпочтительности некоторого числа троек альтернативных вариантов рассчитываются числа u1, u2, …, un, с помощью которых формируется линейная функция полезности:

u1p1 + u2p2 + … + unpn,

Эта формула позволяет сравнивать по предпочтительности различные лотереи, характеризующиеся различными вероятностями реализации альтернативных вариантов а1, а2, …, аn.

 







Дата добавления: 2015-08-27; просмотров: 480. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия