Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Краткие сведения из теории. Арифметические сумматоры – составная часть арифметико-логических устройств (АЛУ) микропроцессоров (МП)





Арифметические сумматоры – составная часть арифметико-логических устройств (АЛУ) микропроцессоров (МП). Арифметический сумматор состоит из двух устройств: полусумматора и n полных сумматоров. Полный сумматор имеет три входа: A, B – входы суммируемых операндов, Ci – вход переноса из предыдущего разряда сумматора и два выхода: S – выход полного сумматора и C0 – выход переноса. Полусумматор отличается от полного тем, что у него нет входа переноса из предыдущего разряда. Полусумматор используется в качестве первого разряда арифметического сумматора, а в качестве остальных разрядов – полные сумматоры (рис. 47). Полусумматор – одна из простейших комбинационных логических схем.

 

Рис. 47 . Четырехразрядный арифметический сумматор

 

Рассматривая таблицу истинности полусумматора (табл. 12) можно заметить, что выход S полусумматора выполняет функции элемента «ИСКЛЮЧАЮЩЕЕ ИЛИ», а выход переноса С полусумматора – элемента «И». Таким образом, логические выражения для функций SиCравны:

S=AB+AB, C=AB.

Т а б л и ц а 12

Входы Выходы
А В S C

 

Схема полусумматора представлена на рис. 48.

Рис. 48. Структура полусумматора

 

Из таблицы истинности полного сумматора (табл. 13) можно получить логические выражения для S (суммы) и C (переноса в следующий разряд). Логическое выражение для S будет иметь четыре слагаемых, соответствующих строкам таблицы, в которых выход S равен единице (стоки 4, 5, 7, 10),

S= ABCi-1+A′BCi-1+ABCi-1+ABCi-1.

Т а б л и ц а 13

Входы Выходы
А В Ci-1 S Ci

 

Логическое выражение для C также будет иметь четыре слагаемых (строки 6, 8, 9, 10):

Ci=ABCi-1+ABCi-1+ABCi-1+ABCi-1.

С помощью законов булевой алгебры (см. лаб. раб. №1) это выражение можно упростить, тогда оно будет иметь вид

Сi=ACi-1+BCi-1+AB.

Схема полного сумматора изображена на рис. 49.

 

Рис. 49. Структура полного сумматора







Дата добавления: 2015-08-27; просмотров: 666. Нарушение авторских прав; Мы поможем в написании вашей работы!

Studopedia.info - Студопедия - 2014-2022 год . (0.014 сек.) русская версия | украинская версия