Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тема 6. Дробный факторный эксперимент





Исследователь должен отчётливо представлять, что в соответствии с формулой (**) на с. 56 с увеличением числа факторов k значительно возрастает количество потребных опытов. Это увеличивает трудоёмкость исследования, требует для его проведения большего времени и больших затрат.

При варьировании на двух уровнях трёх факторовминимальное число опытов N min = 23 = 8; четырёх факторов – N min = 24 = 16; пяти факторов –- N min = 25 = 32 и т.д.

В металлургии и литейном производстве объекты, как правило, являются многофакторными. Поэтому несомненный интерес представляет использовать такую методику эксперимента, которая даёт возможность сократить число опытов. Такой методикой явился дробный факторный эксперимент (ДФЭ)

ДФЭ отличается от полного факторного эксперимента тем, что исследователь реализует не все опыты, предусмотренные матрицей плана ПФЭ, а лишь часть их, которая называется дробной репликой ПФЭ [21], с.144…151; [32], с.62 … 70 (полурепликой, четвертьрепликой и т.д.). Для этого имеется возможность приравнивания кодированных значений отдельных факторов произведениям кодированных значений других факторов. Следовательно, эти отдельные факторы можно не варьировать в процессе эксперимента, число опытов в составе которого соответственно сократится.

Формальным основанием ДФЭ является информационная избыточность ПФЭ, поскольку число отдельных опытов в составе последнего превышает количество искомых коэффициентов математической модели объекта.

Сокращение числа опытов в ДФЭ вынуждает ограничиваться более простыми моделями, например только их линейным приближением, то есть без включения в состав модели членов, содержащих произведения факторов.

При изучении теории ДФЭ используется значительно более сложный математический аппарат, чем необходимый в ПФЭ. Здесь особое внимание рекомендуется уделить ознакомлению с такими понятиями, как смешивание оценок, генерирующие соотношения, определяющий контраст, эффекты взаимодействия различных порядков и метод перевала.

Для более ясного понимания материала данной темы рассмотрим следующий пример.

Пусть требуется найти линейную математическую модель объекта вида

Ŷ; = b 0 + b 1 X1 + b 2 X2 + b 3 X3 . (***)

Решение подобной задачи методом ПФЭ потребовало бы постановки N min = 23 = 8 опытов. Метод ДФЭ позволяет ограничиться лишь четырьмя опытами, то есть полурепликой от плана ПФЭ (табл.4 и 5, где u – номер строки матрицы плана эксперимента).

 

Таблица 4

Первая полуреплика ПФЭ типа 23

№ опыта X0 X1 X2 X1· X2= X3 Yu
  + + Y1
  + + Y2
  + + Y3
  + + + + Y4

 

Таблица 5

Вторая полуреплика ПФЭ типа 23

 

№ опыта X0 X1 X2 X1· X2= – X3 Yu
  + Y5
  + + + Y6
  + + + Y7
  + + + Y8

 

Вообще, если реализовать ПФЭ типа 22, то последний даёт возможность построить модель вида

 

Ŷ = b 0 + b 1X1 + b 2X2 + b 12X1X2.

 

Сравнивая между собой последнее выражение и формулу (***) на с.60 и замечая, что столбцы матриц для X3 в табл. 4 и для X1· X2 в табл. 5 взаимно коррелированны, то есть изменение в одном из них сопровождается таким же изменением в другом. Отсюда можно заключить, что приравнивание произведения двух факторов третьему фактору X1· X2= X3 делает оценку коэффициента b 3 смешанной с оценкой коэффициента b 12.

Формальное приравнивание произведения факторов фактору, не входящему в это произведение, является основополагающей идеей метода ДФЭ. На основании этой идеи удаётся сократить число варьируемых факторов в процессе эксперимента и тем самым уменьшить общее число опытов, необходимых для построения математической модели объекта.

Операцию смешивания оценок коэффициентов модели, полученной способом ДФЭ, принято условно записывать в виде выражения

 

b 3 → b3 +b12,

где символ b использован для обозначения истинного значения соответствующего коэффициента, которое могло бы быть оценено методом ПФЭ.

Опыт общения со студенческой аудиторией показывает, что термин “эффект взаимодействия факторов” часто воспринимается совершенно неверно как якобы один из факторов воздействует на другой и наоборот. В действительности факторы независимы! А этот неудачный термин означает, что значение выхода объекта зависит не только от значения одного из факторов, но также от того, каково при этом значение другого фактора.

Если из априорной информации (например, из теоретических основ функционирования исследуемого объекта известно, что в действительности эффекты взаимодействия факторов отсутствуют или незначительны, то есть любое изменение данного фактора воздействует на выход объекта совершенно независимо от численных значений других факторов, то результаты ДФЭ и ПФЭ оказываются полностью идентичными. В таком случае b12 = 0, следовательно b3 = b3, что даёт возможность реализовать упомянутые выше преимущества ДФЭ.

Пример. В одной из задач потребовалось построить математическую модель прочности сплава σв, МПа, на основе железа при 800°С в зависимости от содержания в нём семи элементов: Cr, Ni, Mo, V, Nb, Mn, C.

Реализация ПФЭ в этом случае при варьировании всех факторов на двух уровнях потребовала бы постановки N min = 27 = 128 опытов (опытных плавок с последующим определением свойств образцов стали каждой из них).

Из металлографических соображений эффекты взаимодействия факторов в исследуемом объекте маловероятны или пренебрежимо малы.

Была реализована 1/16 реплика ПФЭ, то есть ДФЭ типа 27-4, где формально четыре фактора были заменены соответствующими произведениями остальных факторов. Это позволило сократить число опытов до 27-4 = 8.интервалы варьирования выбрали из экономических соображений.

Особенности проведения ДФЭ в рассматриваемом примере представлены в табл.6

Заметим, что дробные реплики, образованные делением матрицы планирования ПФЭ на две, четыре, восемь (вообще на 2m, где m – целое число) частей, называются регулярными. Обработка и анализ таких реплик производится по тем же правилам, что и в ПФЭ.

В общем случае условное обозначение плана регулярной реплики имеет вид L k-p, где р – число линейных эффектов, приравненных к эффектам взаимодействия (произведению факторов).

 

Таблица 6

Пример планирования эксперимента по методу ДФЭ

  Исследуемые факторы     Процентное содержание э элементов   Прочность σв, 10 МПа
             
Сг Ni Мо V Nb Мn С
Основной уро-вень, %   уровень, %     0,1 0,02 0,1 0,4 0,4  
Интервал:.                
варьирова-                
ния, %     0,1 0,02 0,1 0,1 0,1  
Верхний                
уровень, %     0,2 0,04 0,2 0,5 0,5  
Нижний                
уровень, %           0,3 0,3  
Обозначения                
переменных X1 X2 X3 X4 X5 X6 X7  
№ опыта                
  1,5
  + + + + — — 3,5
  + + + + 6,2
  + + —. + + 3,2
  + + + + 5,3
  + + +. — — - + 5,1
  + + + + 5,3
  + + + + 5,8

 

 

Обработка результатов привела к следующей математической модели прочности исследуемого сплава

 

σв = (4б5 + 0,72 X1 – 0,09 X2 +0,64 X3 +0,89 X4 +0,54 X5

- 0,16 X6 +0,46 X7) · 10 МПа,

 

где X1 … X7 – кодированные значения факторов (содержания соответствующих легирующих элементов в сплаве).

Важно отметить, что в случаях, когда нет уверенности в отсутствии эффектов взаимодействия факторов, необходимо переходить к более сложным планам ДФЭ. При этом базироваться на использовании генерирующих соотношений и определяющих контрастов, описанных в рекомендованной литературе [21], c.144 … 151; [32], c. 62 … 70.

Вопросы для самопроверки

1. Сколько опытов (без учета дублирования) содержит четверть - реплика от плана ПФЭ типа 24?

2. В чём проявляется операция смешивания оценок при ДФЭ?

3. В каком случае результаты ПФЭ и ДФЭ оказываются полностью идентичными?

4. Что означает план 27-4 при постановке ДФЭ?

5. Для каких дробных реплик обработку и анализ результатов ДФЭ можно производить с помощью те же компьютерных программ, что и в ПФЭ?

6. Какие элементы в рекомендованном для рассмотрения примере увеличивают прочность сплава и какие уменьшают?

7. Какие соотношения между факторами называются генерирующими?

8. Чем отличается оценка коэффициента математической модели от его истинного значения?

9. Что такое определяющий контраст?

10. Что понимают под разрешающей способностью реплики?

 







Дата добавления: 2015-08-29; просмотров: 1816. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Studopedia.info - Студопедия - 2014-2026 год . (0.013 сек.) русская версия | украинская версия