Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Найти площадь области, ограниченной эллипсом .





 

Решение.

Из уравнения эллипса для I квадранта имеем . Отсюда по формуле получаем

Применим подстановку x = a sin t, dx = a cos t dt. Новые пределы интегрирования t = α; и t = β; определяются из уравнений 0 = a sin t, a = a sin t. Можно положить α; = 0 и β; = π;/2.

Находим одну четвертую искомой площади

Отсюда S = πab.

Найти площадь фигуры, ограниченной линиями y = - x 2 + x + 4 и y = - x + 1.

 

Решение.

Найдем точки пересечения линий y = - x 2 + x + 4, y = - x + 1, приравнивая ординаты линий: - x 2 + x + 4 = - x + 1 или x 2 - 2 x - 3 = 0. Находим корни x 1 = -1, x 2 = 3 и соответствующие им ординаты y 1 = 2, y 2 = -2.

По формуле площади фигуры получаем

Определить площадь, ограниченную параболой y = x 2 + 1 и прямой x + y = 3.

 

Решение.

Решая систему уравнений

находим абсциссы точек пересечения x 1 = -2 и x 2 = 1.

Полагая y 2 = 3 - x и y 1 = x 2 + 1, на основании формулы получаем

Вычислить площадь, заключенную внутри лемнискаты Бернулли r 2 = a 2cos 2 φ;.

 

Решение.

В полярной системе координат площадь фигуры, ограниченной дугой кривой r = f (φ;) и двумя полярными радиусами φ;1 = ʅ; и φ;2 = ʆ;, выразится интегралом

В силу симметрии кривой определяем сначала одну четвертую искомой площади

Следовательно, вся площадь равна S = a 2.

Вычислить длину дуги астроиды x 2/3 + y 2/3 = a 2/3.

 

Решение.

Запишем уравнение астроиды в виде

(x 1/3)2 + (y 1/3)2 = (a 1/3)2.

Положим x 1/3 = a 1/3cos t, y 1/3 = a 1/3sin t.

Отсюда получаем параметрические уравнения астроиды

x = a cos3 t, y = a sin3 t, (*)

где 0 ≤ t ≤ 2 π;.

Ввиду симметрии кривой (*) достаточно найти одну четвертую часть длины дуги L, соответствующую изменению параметра t от 0 до π;/2.

Получаем

dx = -3 a cos2 t sin t dt, dy = 3 a sin2 t cos t dt.

Отсюда находим

Интегрируя полученное выражение в пределах от 0 до π;/2, получаем

Отсюда L = 6 a.

Найти площадь, ограниченную спиралью Архимеда r = ; и двумя радиусами-векторами, которые соответствуют полярным углам φ;1и φ;2 (φ;1 < φ;2).

 

Решение.

Площадь, ограниченная кривой r = f (φ;) вычисляется по формуле , где α; и β; - пределы изменения полярного угла.

Таким образом, получаем

(*)

Из (*) следует, что площадь, ограниченная полярной осью и первым витком спирали Архимеда (φ;1 = 0; φ;2 = 2 π;):

Аналогичным образом находим площадь, ограниченную полярной осью и вторым витком спирали Архимеда (φ;1 = 2 π;; φ;2 = 4 π;):

Искомая площадь равна разности этих площадей

Вычислить объем тела, полученного вращением вокруг оси Ox фигуры, ограниченной параболами y = x 2 и x = y 2.

 

Решение.

Решим систему уравнений

и получим x 1 = 0, x 2 = 1, y 1 = 0, y 2 = 1, откуда точки пересечения кривых O (0; 0), B (1; 1). Как видно на рисунке, искомый объем тела вращения равен разности двух объемов, образованных вращением вокруг оси Ox криволинейных трапеций OCBA и ODBA:

Вычислить площадь, ограниченную осью Ox и синусоидой y = sin x на отрезках: а) [0, π;]; б) [0, 2 π;].

 

Решение.

а) На отрезке [0, π;] функция sin x сохраняет знак, и поэтому по формуле , полагая y = sin x, находим

б) На отрезке [0, 2 π;], функция sin x меняет знак. Для корректного решения задачи, необходимо отрезок [0, 2 π;] разделить на два [0, π;] и [ π;, 2 π;], в каждом из которых функция сохраняет знак.

По правилу знаков, на отрезке [ π;, 2 π;] площадь берется со знаком минус.

В итоге, искомая площадь равна







Дата добавления: 2015-08-17; просмотров: 1706. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия