Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вынужденные колебания. Резонанс.





Рассмотрим важный случай колебаний, возникающих, когда на точку, кроме восстанавливающей силы , действует еще периодически изменяющаяся со вре­менем сила , проекция которой на ось Ох равна

.

Эта сила называется возмущающей силой, а колебания, происхо­дящие при действии такой силы, называются вынужденными. Вели­чина Р является частотой возмущающей силы.

Возмущающей силой может быть сила, изменяющаяся со временем и по другому закону. Мы ограничимся рассмотрением случая, когда определяется указанным равенством. Такая возмущающая сила назы­вается гармонической.

Рассмотрим движение точки, на которую, кроме вос­станавливающей силы , действует только возмущаю­щая сила . Дифференциальное уравнение движения в этом случае

.

Разделим обе части этого уравнения на т и положим

.

Тогда, учитывая обозначение, приведем уравнение движения к виду

.

Уравнение является дифференциальным уравнением вынуж­денных колебаний точки при отсутствии сопротивления. Его решением, как известно из теории дифференциальных уравнений, будет , где -общее решение уравнения без правой части, а - какое-нибудь частное решение полного уравнения.

Полагая, что p = k, будем искать решение в виде

,

где А - постоянная величина, которую надо подобрать так, чтобы равенство обратилось в тождество. Подставляя значение и его второй производной в уравнение будем иметь:

.

Это равенство будет выполняться при любом t, если или

.

Таким образом, искомое частное решение будет

.

Так как , а общее решение имеет окончательно вид

,

где а и - постоянные интегрирования, определяемые по начальным данным. Решение показывает, что колебания точки складываются в этом случае из: 1) колебаний с амплитудой а (зависящей от на­чальных условий) и частотой k, называемых собственными колеба­ниями, и 2) колебаний с амплитудой А (не зависящей от начальных условий) и частотой р, которые называются вынужденными колеба­ниями

Частота р вынужденных колебаний, как видно, равна частоте воз­мущающей силы. Амплитуду этих колебаний, если разделить числи­тель и знаменатель на , можно представить в виде:

,

где , т. е. есть величина статического отклонения точки под действием силы . Как видим, A зависит от отношения частоты р возмущающей силы к ча­стоте k собственных колебаний.

Подбирая различ­ные соотношения между р и k, можно получить вынужденные коле­бания с разными амплитудами. При амплитуда равна (или близка к этой величине). Если величина р близка к k, амплитуда A становится очень большой. Когда , амплитуда A становится очень малой (практически близка к нулю).

Резонанс. В случае, когда , т.е. когда частота возму­щающей силы равна частоте собственных колебаний, имеет место так называемое явление резонанса. Размахи вынужденных колебаний при резонансе будут со временем неограниченно возрастать так, как показано на рис.35.

Рис.35







Дата добавления: 2015-08-30; просмотров: 665. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия