Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вычисление тройного интеграла в декартовых координатах





 

Вычисление тройного интеграла сводится к вычислению трехкратного интеграла.

В декартовых координатах область V, правильная в направлении оси OZ, записывается системой неравенств

,

где D – это проекция области V на плоскость XOY, а поверхности и ограничивают область V соответственно снизу и сверху (Рис. 6).

Если двумерную область D также записать системой неравенств , то трехмерная область V запишется системой трех неравенств

Тогда тройной интеграл сводится сначала к двойному, а затем к трёхкратному с учётом того, что в декартовых координатах dV = dx × dy × dz;

формула сведения тройного интеграла к трехкратному интегралу имеет следующий вид:

(1)

Существует всего 6 вариантов сведения тройного интеграла к трехкратному в декартовых координатах (в зависимости от выбранного порядка интегрирования).

Пример 1 (вычисление тройного интеграла в декартовых координатах)

Вычислить , где область V ограничена поверхностями .

Решение

  Запишем область V системой трёх неравенств:

 

Сводим тройной интеграл к трехкратному по формуле (1) в соответствии с системой

неравенств и вычисляем трехкратный интеграл:

.

 
Замена переменных в тройных интегралах
 
При вычислении тройного интеграла, как и двойного, часто удобно сделать замену переменных. Это позволяет упростить вид области интегрирования или подынтегральное выражение. Пусть исходный тройной интеграл задан в декартовых координатах x, y, z в области U: Требуется вычислить данный интеграл в новых координатах u, v, w. Взаимосвязь старых и новых координат описывается соотношениями: Предполагается, что выполнены следующие условия: 1. Функции φ, ψ, χ непрерывны вместе со своими частными производными;   2. Существует взаимно-однозначное соответствие между точками области интегрирования U в пространстве xyz и точками области U' в пространстве uvw;   3. Якобиан преобразования I (u,v,w), равный отличен от нуля и сохраняет постоянный знак всюду в области интегрирования U. Тогда формула замены переменных в тройном интеграле записывается в виде:

 


 

Тройные интегралы в сферических координатах
 
Сферическими координатами точки M (x,y,z) называются три числа − ρ, φ, θ, где ρ − длина радиуса-вектора точки M; φ − угол, образованный проекцией радиуса-вектора на плоскость Oxy и осью Ox; θ − угол отклонения радиуса-вектора от положительного направления оси Oz (рисунок 1).
   
Рис.1    

Обратите внимание, что определения ρ, φ в сферических и цилиндрических координатах отличаются друг от друга.

Сферические координаты точки связаны с ее декартовыми координатами соотношениями

Якобиан перехода от декартовых координат к сферическим имеет вид:

Раскладывая определитель по второму столбцу, получаем

Соответственно, абсолютное значение якобиана равно

Следовательно, формула замены переменных при преобразовании декартовых координат в сферические имеет вид:

Тройной интеграл удобнее вычислять в сферических координатах, когда область интегрирования U представляет собой шар (или некоторую его часть) и/или когда подынтегральное выражение имеет вид f (x 2 + y 2 + z 2).

Иногда выгодно использовать т.н. обощенные сферические координаты, связанные с декартовыми формулами

В этом случае якобиан равен

 


 

Криволинейные интегралы первого рода
 
Определение Пусть кривая C описывается векторной функцией , где переменная s представляет собой длину дуги кривой (рисунок 1). Если на кривой C определена скалярная функция F, то интеграл называется криволинейным интегралом первого рода от скалярной функции F вдоль кривой C и обозначается как Криволинейный интеграл существует, если функция F непрерывна на кривой C.
 
Рис.1   Рис.2






Дата добавления: 2015-08-30; просмотров: 1226. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия