Пусть функции P(x,y), Q(x,y), P'y(х,у), Q'x(х,у) непрерывны в замкнутой области D, ограниченной контуром L (рис. 3.6).
Пусть контур L, кроме того, пересекается прямыми, параллельными осям координат, не более чем в двух точках.
Пусть уравнение АСВ есть y = y1(x) при a ≤ x ≤ b, и уравнение АКВ есть y = y2(x) при a ≤ x ≤ b.
Преобразуем двойной интеграл:
здесь символ означает криволинейный интеграл по замкнутому контуру L.
Аналогично получается
Вычитая из формулы (3.9) формулу (3.8), получаем формулу Грина
Независимость криволинейных интегралов от пути интегрирования
|
|
Определения
Криволинейный интеграл второго рода от векторной функции не зависит от пути интегрирования, если P, Q и R являются непрерывными функциями в области интегрирования D и в этой области существует скалярная функция , такая, что
В этом случае криволинейный интеграл второго рода от функции вдоль кривой C от точки A до точки B выражается формулой
(Здесь можно увидеть аналогию с формулой Ньютона-Лейбница для определенных интегралов.) Таким образом, если криволинейный интеграл не зависит от пути интегрирования, то для любого замкнутого контура C справедливо соотношение
Векторное поле, обладающее свойством , называется потенциальным, а функция называется потенциалом.
Признак потенциальности поля
Криволинейный интеграл II рода от функции не зависит от пути интегрирования, если
Предполагается, что каждый компонент функции имеет непрерывные частные производные по переменным x, y и z. Если криволинейный интеграл рассматривается в плоскости O xy, то в случае потенциального поля будет справедливо соотношение
В этом случае признак потенциальности векторного поля упрощается и принимает вид
Рассмотренный признак является необходимым, но, вообще говоря, не достаточным для потенциальности поля. Данное условие достаточно, если только область интегрирования D односвязна.
|