Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интегрирование полных дифференциалов





Предположим, что выражение есть полный дифференциал функции . В соответствии с доказательствами условий независимости криволинейного интеграла от выбора пути можно заключить, что большое количество функций, которые удовлетворяют условию представляют собой

 

 

Для того, чтобы определить функцию , за путь интегрирования можно принять, допустим, , здесь и представлены в качестве отрезков, которые являются параллельными осям координат (рис. 26.7). В этом случае

 

 

Учитывая то, что

 

 

имеем

 

(26.6)

 

Пример 1: Определить, можно ли назвать выражение полным дифференциалом Если это так, то вычислить

 

 

cледовательно, В соответствии с (26.5) запишем

 

 

Пример 2: Найти

 

Выражение под знаком интеграла есть полный дифференциал (рис.26.8). В этом случае :

:

 


Рис. 26.7

 

Рис. 26. 8

 


 

3.14. Скалярное поле, производная скалярной функции по заданному направлению
  Будем вести рассмотрение этих новых понятий в двух или трёхмерном пространстве из-за простоты геометрической или физической интерпретаций. Полем величины U называют область D трехмерного пространства, с каждой точкой M(x,y,z) которой в каждый момент времени t связано определённое значение величины "U". Если U есть скалярная (векторная) величина, то и порождаемое ею поле называют скалярным (векторным). Задание скалярного поля есть задание скалярной функции U = f(M,t) = f(x,y,z). Если величина U не зависит от времени t, то поле называют стационарным, или установившимся. Пусть задано скалярное стационарное поле U = f(M) = f(x,y,z), где функцию f(x,y,z) будем всегда предполагать непрерывно дифференцируемой в рассматриваемой области. Основной вопрос исследования скалярного поля есть вопрос об изменении функции U при переходе из одной точки пространства в другую. Для выяснения этого вопроса рассмотрим, прежде всего, геометрическое место точек, в которых величина U сохраняет постоянное значение. Это геометрическое место точек называют поверхностью уровня скалярного поля U. Ее уравнение в выбранной системе координат имеет вид: U(x,y,z) = C, где C = const.Следовательно, изменяя значения C, получаем семейство поверхностей уровня, которые заполняют всю область, где определено поле, и никакие две поверхности уровня, отвечающие различным значениям C, не имеют общих точек. Задание всех поверхностей уровня с указанием соответствующих значений C равносильно заданию самого поля. Указанный способ изображения поля особенно удобен, если речь идет о поле, заданном в плоской области D двух переменных. В этом случае уравнение U(x,y) = C определяет, вообще говоря, некоторую кривую линию, называемую линией уровня плоского скалярного поля. Такие линии различных скалярных полей всем хорошо известны: линии равных высот (горизонтали) удобны для изображения размера местности, линии равных температур (изотермы) или линии равных давлений (изобары) в метеорологии и т. д.

 

В математическом анализе, производная по направлению — это обобщение понятия производной на случай функции нескольких переменных. Производная по направлению показывает, насколько быстро функция изменяется при движении вдоль заданного направления.

Производная функции одной переменной показывает, как изменяется её значение при малом изменении аргумента. Если мы попытаемся по аналогии определить производную функции многих переменных, то столкнёмся с трудностью: в этом случае изменение аргумента (то есть точки в пространстве) может происходить в разных направлениях, и при этом будут получаться разные значения производной. Именно это соображение и приводит к определению производной по направлению.

Рассмотрим функцию от аргументов в окрестности точки . Для любого единичного вектора определим производную функции в точке по направлению следующим образом:

Значение этого выражения показывает, как быстро меняется значение функции при сдвиге аргумента в направлении вектора .

Если направление сонаправленно с координатной осью, то производная по направлению совпадает с частной производной по этой координате.

 








Дата добавления: 2015-08-30; просмотров: 2243. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия