Определение двойного интеграла
Понятие интеграла может быть расширено на функции двух и большего числа переменных. Рассмотрим, например, функцию двух переменных z = f (x,y). Двойной интеграл от функции f (x,y) обозначается как где R - область интегрирования в плоскости O xy. Если определенный интеграл от функции одной переменной выражает площадь под кривой f (x) в интервале от x = a до x = b, то двойной интеграл выражает объем под поверхностью z = f (x,y) выше плоскости O xy в области интегрирования R
кобиан такого преобразования имеет вид Следовательно, дифференциальный элемент в полярных координатах будет равен Пусть область интегрирования R в полярных координатах определяется следующим образом (рисунок 2): Тогда двойной интеграл в полярных координатах описывается формулой
Вычисление двойного интеграла в декартовой системе координат для правильной области Пусть область D - правильная в отношении оси Ох (рис. 2.6.) Тогда в этом случае область D может быть задана одной системой неравенств:
Если существует двойной интеграл Данное представление (2.11) получается из определения двойного интеграла при специальном способе разбиения области D на n "мелких" частей (линиями, параллельными либо Ох, либо Оу - прямоугольной "шахматной" сеткой. А затем выполняется суммирование "объёмов" Δ Vi сначала по оси Оу, а затем по оси Ох).
|