Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Затылование по прямой





 

Фрезы, затылованные по спирали Архимеда, наряду с очевидными преимуществами, имеют серьезный недостаток: не позволяют сильно увеличивать главный задний угол , из-за чего боковые задние углы оказываются незначительными. По этой причине увеличивается износ боковых кромок, снижается стойкость фрезы, возрастает шероховатость обрабатываемой поверхности, снижается производительность из-за необходимости работы на пониженных режимах.

Этих недостатков лишены фрезы, затылованные по прямой линии. Процесс затылования по прямой линии осуществляется при равномерном вращении фрезы и некоторым неравномерным прямолинейным перемещением затыловочного резца. При этом по прямой будет оформлен зуб на наружном диаметре фрезы, а другие участки профиля с обтачиваются по некоторым вогнутым кривым.

Так как высота профиля зуба во всех радиальных сечениях должна быть постоянной, то боковой профиль зуба образуется кривыми, являющимися конхоидами прямой, описанными из полюса (рис. 2.8).

Рис. 2.8. Прямая как кривая затылования

Уравнение прямой линии в полярных координатах определяется из треугольника

(2.18)

где - радиус-вектор точки ; - расстояние от полюса до прямой ; - полярный угол.

Если от прямой вверх и вниз отложить высоту зуба (на каждом луче из полюса ), то получатся соответственно выпуклая и вогнутая ветви конхоиды.

Уравнение конхоиды прямой имеет вид

(2.19)

Пусть зуб фрезы располагается в системе координат так, чтобы главная задняя поверхность была перпендикулярна оси (рис. 2.9).

Рис. 2.9. Задний угол при затыловании по прямой

В точке задний угол имеет максимальное значение, а при переточках (например, плоскость ) уменьшается и в точке теоретически равен 0. Практически зуб стачивается на угол , поэтому в точке угол и имеет некоторое минимальное значение; эту величину можно задать и по ней найти центральный угол зуба .

Пусть точка , имеет координаты и находится на расстоянии от прямой профиля . Тогда, как и ранее

(2.20)

После определения производной выражения (2.19)

тогда

откуда

. (2.21)

из треугольника следует, что , а тогда

(2.22)

Из зависимости (2.22) видно, что с увеличением высоты профиля задние углы на конхоиде увеличиваются, поэтому всегда надо проверять задний угол по заданному профилю. С увеличением (по мере переточки) уменьшается ( для точки ).

Если задний угол у самой нижней точки конхоиды получится слишком большим, надо изменить на вершине зуба или, если это возможно, уменьшить высоту профиля .

В силу этого обстоятельства фрезы, затылованные по прямой, имеют малую высоту зуба и соответственно большее количество зубьев.

Чтобы избежать большого числа зубьев у фрезы и обеспечить минимальную величину заднего угла по всей вершине зуба, применяют двойное затылование (мелкомодульные червячные фрезы, резьбофрезы). В этом случае максимальный задний угол берется для начальной точки и точки , находящейся на середине зуба (рис. 2.10).

Рис. 2.10. Зуб фасонной фрезы с двойным затылком

При подстановке в выражение вместо его значение из (2.19), получается

После элементарных алгебраических преобразований получается следующее выражение:

(2.23)

Если задаться углом , то можно определить допустимую высоту профиля . Обычно .

Величина одинарного затылования по прямой линии (рис. 2.11, а) определяется по выражению

(2.24)

Из косоугольного треугольника по теореме синусов:

откуда следует

(2.25)

Для двойного затылования вывод формулы аналогичен (рис. 2. 11, б):

Рис. 2.11. Величина затылования: а - одинарное; б – двойное.

(2.26)

Из треугольника :

откуда следует

(2.27)

Из треугольника :

откуда следует

(2.28)

Подставив (2.28) в (2.27)

(2.29)

Из (2.25) и (2.29) получается

(2.30)







Дата добавления: 2015-08-30; просмотров: 1422. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия