Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Затылование по спирали Архимеда





 

Уравнение спирали Архимеда в полярных координатах (рис. 2.5) имеет вид:

(2.14)

где - радиус-вектор точки на кривой; - текущий полярный угол в радианах для точки на кривой; - постоянный коэффициент, равный полярной поднормали;

Угол между касательной и радиус-вектором для точки спирали Архимеда определяется по аналогии с предыдущим:

где - производная уравнения кривой по параметру .

Рис. 2.5. Спираль Архимеда

тогда

Так как , а радиус-вектор есть переменная величина, то задний угол при переточках фрезы не является постоянным, а изменяется пропорционально полярному углу .

Из уравнения спирали Архимеда видно, что приращение радиус-вектора пропорционально приращению полярного угла. Поэтому вся поверхность зуба фрезы состоит из отрезков одной и той же спирали Архимеда, являющихся ее конхоидами (рис. 2.6).

Рис. 2.6. Задний угол на конхоиде спирали Архимеда

Задний угол определяется аналогично тому, как это делалось для логарифмической спирали.

На глубине профиля имеется точка . Уравнение спирали Архимеда для нее:

или (2.15)

Формула (2.15) показывает, что задние углы для разных точек профиля (для конхоиды спирали) есть переменные величины, увеличивающиеся с увеличением . Из сравнения формул для и видно, что , так как

Из формулы с учетом того, что следует

Подставив в формулу (2.15) вместо его значение , получится

(2.16)

Величина затылования определяется по аналогии с выводом формулы для затылования по логарифмической спирали (рис. 2.7).

Рис. 2.7. Величина затылования по архимедовой спирали

Для точки 1 уравнение спирали Архимеда . Для точки 2:

Величина затылования . Известно, что , откуда . Тогда с учетом получается

(2.17)

 







Дата добавления: 2015-08-30; просмотров: 1675. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия