Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Затылование по спирали Архимеда





 

Уравнение спирали Архимеда в полярных координатах (рис. 2.5) имеет вид:

(2.14)

где - радиус-вектор точки на кривой; - текущий полярный угол в радианах для точки на кривой; - постоянный коэффициент, равный полярной поднормали;

Угол между касательной и радиус-вектором для точки спирали Архимеда определяется по аналогии с предыдущим:

где - производная уравнения кривой по параметру .

Рис. 2.5. Спираль Архимеда

тогда

Так как , а радиус-вектор есть переменная величина, то задний угол при переточках фрезы не является постоянным, а изменяется пропорционально полярному углу .

Из уравнения спирали Архимеда видно, что приращение радиус-вектора пропорционально приращению полярного угла. Поэтому вся поверхность зуба фрезы состоит из отрезков одной и той же спирали Архимеда, являющихся ее конхоидами (рис. 2.6).

Рис. 2.6. Задний угол на конхоиде спирали Архимеда

Задний угол определяется аналогично тому, как это делалось для логарифмической спирали.

На глубине профиля имеется точка . Уравнение спирали Архимеда для нее:

или (2.15)

Формула (2.15) показывает, что задние углы для разных точек профиля (для конхоиды спирали) есть переменные величины, увеличивающиеся с увеличением . Из сравнения формул для и видно, что , так как

Из формулы с учетом того, что следует

Подставив в формулу (2.15) вместо его значение , получится

(2.16)

Величина затылования определяется по аналогии с выводом формулы для затылования по логарифмической спирали (рис. 2.7).

Рис. 2.7. Величина затылования по архимедовой спирали

Для точки 1 уравнение спирали Архимеда . Для точки 2:

Величина затылования . Известно, что , откуда . Тогда с учетом получается

(2.17)

 







Дата добавления: 2015-08-30; просмотров: 1675. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия