Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Затылование по спирали Архимеда





 

Уравнение спирали Архимеда в полярных координатах (рис. 2.5) имеет вид:

(2.14)

где - радиус-вектор точки на кривой; - текущий полярный угол в радианах для точки на кривой; - постоянный коэффициент, равный полярной поднормали;

Угол между касательной и радиус-вектором для точки спирали Архимеда определяется по аналогии с предыдущим:

где - производная уравнения кривой по параметру .

Рис. 2.5. Спираль Архимеда

тогда

Так как , а радиус-вектор есть переменная величина, то задний угол при переточках фрезы не является постоянным, а изменяется пропорционально полярному углу .

Из уравнения спирали Архимеда видно, что приращение радиус-вектора пропорционально приращению полярного угла. Поэтому вся поверхность зуба фрезы состоит из отрезков одной и той же спирали Архимеда, являющихся ее конхоидами (рис. 2.6).

Рис. 2.6. Задний угол на конхоиде спирали Архимеда

Задний угол определяется аналогично тому, как это делалось для логарифмической спирали.

На глубине профиля имеется точка . Уравнение спирали Архимеда для нее:

или (2.15)

Формула (2.15) показывает, что задние углы для разных точек профиля (для конхоиды спирали) есть переменные величины, увеличивающиеся с увеличением . Из сравнения формул для и видно, что , так как

Из формулы с учетом того, что следует

Подставив в формулу (2.15) вместо его значение , получится

(2.16)

Величина затылования определяется по аналогии с выводом формулы для затылования по логарифмической спирали (рис. 2.7).

Рис. 2.7. Величина затылования по архимедовой спирали

Для точки 1 уравнение спирали Архимеда . Для точки 2:

Величина затылования . Известно, что , откуда . Тогда с учетом получается

(2.17)

 







Дата добавления: 2015-08-30; просмотров: 1675. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия