Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вектор-анализаторы и ротатор.





Для ориентации системы координат векторной системы управления необходимо определить текущее положение опорного вектора. Устройства реализующие эти функции обычно называются вектор-анализаторами.

Если в системе векторного управления требуется стабилизация потокосцепления, то его текущее значение нужно либо измерить, либо вычислить по другим величинам. Измерение потокосцепления не всегда возможно или желательно, т.к. требует установки в АД соответствующих датчиков и, кроме того, при снижении частоты вращения отношение полезного сигнала к шуму на выходе датчиков снижается настолько, что их использование становится невозможным.

В случае потокосцепления ротора его измерение практически невозможно и обычно производится вычисление. Проще всего оно осуществляется, если исходными величинами являются основное потокосцепление и ток статора. Из выражений (1.2.8 б) и (1.2.9) потокосцепление и ток ротора равны

Отсюда

или после разложения на составляющие в неподвижной системе координат, связанной со статором

.

Искомый модуль вектора потокосцепления ротора затем находится по теореме Пифагора . Структурная схема соответствующего блока вычисления приведена на рис. 2.11.

Основное потокосцепление y 0 можно измерить, установив два датчика Холла так, чтобы один находился на оси обмотки фазы a, а другой на перпендикулярной оси. Тогда выходные сигналы датчиков будут пропорциональны y ma и y mb. Составляющие тока статора i 1a и i 1b получаются из фазных токов преобразованием 3-2 в соответствии с выражениями (1.1.2).

Потокосцепление можно определить и не прибегая к измерению магнитного потока. Достаточно измерить токи статора и угловую частоту вращения ротора. При этом вычисление можно производить во вращающейся или в неподвижной системе координат. Входными величинами в обоих случаях являются токи статора в неподвижной системе координат i 1a и i 1b и угловая частота вращения ротора w. Выходными – модуль вектора потокосцепления ротора |y 2|=y 2 d и, если требуется, текущее значение его аргумента J 1. Для вращающейся системы их связь с потокосцеплением ротора определяется выражением (2.2.5), а соответствующая ей структурная схема приведена на рис. 2.12 а).

Векторное уравнение ротора в неподвижной системе координат можно получить из выражения (1.4.5), положив w (mn) =0. Тогда

.

Отсюда, подставив , перейдя к изображениям и опуская индексы системы координат, получим

.

Раскладывая векторы тока статора и потокосцепления ротора на вещественную и мнимую составляющие, получим выражения для проекций потокосцепления в неподвижной системе координат

Этим выражениям соответствует структурная схема рис. 2.12 б), в которой затем по проекциям определяются модуль вектора, а также косинус и синус его аргумента –

Очевидно, что вычисление потокосцепления без использования датчиков магнитного потока требует построения значительно более сложных устройств, однако в некоторых случаях такое решение оправдано, т.к. установка датчиков и формирование в них выходного сигнала также является достаточно сложной задачей. Кроме того, устройства подобные изображенным на рис. 2.12 могут использоваться в системах асинхронного привода для создания контуров стабилизации магнитного потока ротора, т.е. стабилизации его модуля, что позволяет получить при частотном управлении механические характеристики с одинаковой жесткостью рабочих участков при всех частотах питания, что существенно расширяет диапазон регулирования АД.

Необходимым элементом системы векторного управления АД является ротатор, осуществляющий преобразование координат векторов в соответствии с выражениями (1.1.5) и(1.1.6). Если сигналы синуса и косинуса угла поворота J 1 формируются другим блоком, то ротатор легко реализуется по схеме рис. 2.13. Для вращения в положительном направлении, т.е. для реализации функции , на синусный вход ротатора подается сигнал . Изменение направления вращения осуществляется либо инвертированием сигнала , либо инвертированием сигнала J 1.

В случае, если входным сигналом ротатора является угол J 1, то схема рис. 2.13 должна быть дополнена блоками вычисления функций синуса и косинуса, что очень сложно реализовать практически в аналоговой форме, но легко выполнить в цифровой с помощью соответствующей программы процессора или аппаратно с помощью тригонометрической таблицы, хранящейся в ПЗУ.

 

 







Дата добавления: 2015-09-19; просмотров: 396. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия