Студопедия — Вектор-анализаторы и ротатор.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вектор-анализаторы и ротатор.






Для ориентации системы координат векторной системы управления необходимо определить текущее положение опорного вектора. Устройства реализующие эти функции обычно называются вектор-анализаторами.

Если в системе векторного управления требуется стабилизация потокосцепления, то его текущее значение нужно либо измерить, либо вычислить по другим величинам. Измерение потокосцепления не всегда возможно или желательно, т.к. требует установки в АД соответствующих датчиков и, кроме того, при снижении частоты вращения отношение полезного сигнала к шуму на выходе датчиков снижается настолько, что их использование становится невозможным.

В случае потокосцепления ротора его измерение практически невозможно и обычно производится вычисление. Проще всего оно осуществляется, если исходными величинами являются основное потокосцепление и ток статора. Из выражений (1.2.8 б) и (1.2.9) потокосцепление и ток ротора равны

Отсюда

или после разложения на составляющие в неподвижной системе координат, связанной со статором

.

Искомый модуль вектора потокосцепления ротора затем находится по теореме Пифагора . Структурная схема соответствующего блока вычисления приведена на рис. 2.11.

Основное потокосцепление y 0 можно измерить, установив два датчика Холла так, чтобы один находился на оси обмотки фазы a, а другой на перпендикулярной оси. Тогда выходные сигналы датчиков будут пропорциональны y ma и y mb. Составляющие тока статора i 1a и i 1b получаются из фазных токов преобразованием 3-2 в соответствии с выражениями (1.1.2).

Потокосцепление можно определить и не прибегая к измерению магнитного потока. Достаточно измерить токи статора и угловую частоту вращения ротора. При этом вычисление можно производить во вращающейся или в неподвижной системе координат. Входными величинами в обоих случаях являются токи статора в неподвижной системе координат i 1a и i 1b и угловая частота вращения ротора w. Выходными – модуль вектора потокосцепления ротора |y 2|=y 2 d и, если требуется, текущее значение его аргумента J 1. Для вращающейся системы их связь с потокосцеплением ротора определяется выражением (2.2.5), а соответствующая ей структурная схема приведена на рис. 2.12 а).

Векторное уравнение ротора в неподвижной системе координат можно получить из выражения (1.4.5), положив w (mn) =0. Тогда

.

Отсюда, подставив , перейдя к изображениям и опуская индексы системы координат, получим

.

Раскладывая векторы тока статора и потокосцепления ротора на вещественную и мнимую составляющие, получим выражения для проекций потокосцепления в неподвижной системе координат

Этим выражениям соответствует структурная схема рис. 2.12 б), в которой затем по проекциям определяются модуль вектора, а также косинус и синус его аргумента –

Очевидно, что вычисление потокосцепления без использования датчиков магнитного потока требует построения значительно более сложных устройств, однако в некоторых случаях такое решение оправдано, т.к. установка датчиков и формирование в них выходного сигнала также является достаточно сложной задачей. Кроме того, устройства подобные изображенным на рис. 2.12 могут использоваться в системах асинхронного привода для создания контуров стабилизации магнитного потока ротора, т.е. стабилизации его модуля, что позволяет получить при частотном управлении механические характеристики с одинаковой жесткостью рабочих участков при всех частотах питания, что существенно расширяет диапазон регулирования АД.

Необходимым элементом системы векторного управления АД является ротатор, осуществляющий преобразование координат векторов в соответствии с выражениями (1.1.5) и(1.1.6). Если сигналы синуса и косинуса угла поворота J 1 формируются другим блоком, то ротатор легко реализуется по схеме рис. 2.13. Для вращения в положительном направлении, т.е. для реализации функции , на синусный вход ротатора подается сигнал . Изменение направления вращения осуществляется либо инвертированием сигнала , либо инвертированием сигнала J 1.

В случае, если входным сигналом ротатора является угол J 1, то схема рис. 2.13 должна быть дополнена блоками вычисления функций синуса и косинуса, что очень сложно реализовать практически в аналоговой форме, но легко выполнить в цифровой с помощью соответствующей программы процессора или аппаратно с помощью тригонометрической таблицы, хранящейся в ПЗУ.

 

 







Дата добавления: 2015-09-19; просмотров: 365. Нарушение авторских прав; Мы поможем в написании вашей работы!



Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия