Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Седловой точке соответствует пара стратегий сторон (Аi,Вj), которые являются оптимальными.





Совокупность этих стратегий называется решением игры в чистых стратегиях,в случае α ≠ β.

Смешанные стратегии – такие, которые получаются путем случайного чередования чистых стратегий.

Смешанные стратегии стороны А обозначают:

s*A (P1, P2 …Pm) (18.2)

P1, P2, Pm –вероятности, с которыми применяются стратегии А1,А2…Аm соответственно.

∑Pi = 1

i=1

s*B (q1,q2…qn) (18.3)

∑i = qi = 1

j=1

Смешанные стратегии в результате дают пару оптимальных стратегий s*A и s*B и применительно к игре “2 х 2”.

P1 = a22 - a21 )

 

(a 11 + a22) – (a12+ a21)

P2=1-P1 (18.4)

q1= a22 - a12

(a 11+ a22) – (a12+ a21)

q2 =1-q1 (18.5)

 

В этом случае чистая цена игры γ:

γ = a22 *a21 - a12 *a21

(a 11 + a22) – (a12+ a21)

Игра “2 х 2” имеет решение, которое можно получить в геометрической интерпретации.

Правила графического представления результатов игры:

1) На отрезке оси абцисс, длина которого =1 обозначим стратегию А1, а на правом – А2.

В промежуточной точке участка обозначаются смешанные стратегии стороны А.

2) Через точки А1, А2 проводят перпендикуляры к оси Х

Оси I, I и II, II.

На оси I, I откладывают выигрыши, при стратегии А1.

На оси II, II выигрыши при стратегии А2.

3) Стратегия противника В1 дает на осях I, I, II, II точки с координатами a11 и a21; А стратегия В2 - a12 и a22.

4) Ордината точки N пересечения стиратегий В1 и В2 дает величину выигрыша γ – цену игры.

 

Абцисса точки N дает вероятность обеих стратегий P1 и P2, которые равны расстоянию от точки s*A до правого и левого конца отрезка А1 и А2 соответственно. Нижняя (гарантированная) граница выигрыша выделена жирной линией.

I II

В2 В1

N

 
 

 


a12

γ a21

a11 a22

 


I А1 P2 s*A P1 А2 II

 

Задача

Банк хочет купить акции некоторого А.О.; стремясь сделать покупку выгоднее банк снабжает А.О. информацией, которая может восприниматься:

правдивой - А1 и ложной - А2.

А.О. может как проверить информацию - В1, так и не проверить – В2.

В такого класса задачах платежные матрицы игры обычно отражают величину прироста стоимости для успешной сделки для банка по отношению к вложенным средствам.

Платежная матрица:

 

Банк продавец А.О. αi
В1 В2
А1 О,608(a11) 1,0(a12) 0,608
А2 1,0(a21) 0,44(a22) 0,44
βj 1,0 1,0  

 

Требуется выбрать такую стратегию банка, при которой результат будет максимально возможным и независим от действий А.О.

Примечание: Седловой точки в задаче нет, то есть α ≠ β, следовательно оптимальное решение в чистой стратегии не возможно.

Выбор в качестве решения хода А1, имеющего небольшую эффективность, дает неустойчивую стратегию, пригодную лишь в случае если второй игрок (А.О.) не располагает данными о выбранном решении первым игроком (банком).

Решение:

Для получения устойчивой стратегии первым игроком, удовоетворяющим требованиям задачи необходимо искать решение в смешанных стратегиях, в соответствии с формулами 18.4 – 18.6.

 

P1 = a22 - a21 = 0,44-1,0 =0,588

(a 11+ a22) – (a12+ a21) (0,8+0,44) – (1,0+1,0)

 

P2 = 1- P1 =0,412

Поскольку a12 = a21= P1=0,588, q1=0,58, q2=0,412.

По формуле 18.6 чистая цена γ, соответствующая активной стратегии будет равняться:

γ = a22 a21 - a12 a21 = 0,44*0,608 – 1,0*1,0 = 0,769

(a 11 + a22) – (a12+ a21) (0,608+0,44)-(1,0+1,0)

 

Когда все данные рассчитаны можно представить графическое отображение игры «2х2»:

I II

 

 

 

1 В2 В1 1

N

 

 

a12 a21

γ=0,769

a11=0,608 a22

 

 

I А1 P2=0,412 s*A P1=0,588 А2 II банк

 

 

s*A = (р1, р2)

s*В =(q1, q2)

Выводы: Поскольку между банком и А.О. имеют место противоречивые интересы (конфликт цен), то построенная матричная игра при ее решениии заставляет банк сообщить истинную цену акций акционерному обществу. В этом случае по результатам игры банк с вероятностью 0,588 получит максимально возможный результат в виде чистой цены =0,769.

Такая система доказательств менеджером необходимости выдачи сведений об истинной цене акций руководству банка позволяет ему при заключении сделки

“купли – продажи” товара (акций) провести переговоры с продавцом с существенной прибылью для банка.

Такие задачи, возникающие в процессе согласования менеджером цены при заключении сделки “купли – продажи” товара, он обязан решать привлекая инструмент матричных игр. Рассмотрим ещё один характерный пример деятельности предприятия на стадии его развития.







Дата добавления: 2015-09-19; просмотров: 460. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Studopedia.info - Студопедия - 2014-2026 год . (0.012 сек.) русская версия | украинская версия