ЕЛЕКТРОПРИВОД ПРОМИСЛОВИХ МАНІПУЛЯТОРІВ, РОБОТІВ
ЛЕКЦИЯ 5 Основные понятия. Технические требования и параметры ПР. Состав и режимы работы роботов. Классификация ПР. Робот (Р) – автоматическая машина, включающая перепрограммируемое устройство управления и другие технические средства, обеспечивающие выполнение тех или иных действий (в зависимости от назначения Р), свойственных человеку в процессе его трудовой деятельности. Системы и комплексы, автоматизированные с помощью роботов, принято называть роботизированными. Роботизированные системы и комплексы, в которых роботы выполняют основные функции, называют робототехническими. Роботы промышленного назначения – промышленные роботы (ПР), а автоматизированные на их базе технологические комплексы — роботизированными технологическими комплексами (РТК): информационные и управляющие; мобильные (движущиеся); манипуляционные. ПР составляют 90% всего парка роботов в мире. Информационные и управляющие РТС представляют собой комплексы измерительно-информационных и управляющих средств, автоматически производящих сбор, обработку и передачу информации, а также использование ее для формирования различных управляющих сигналов. В промышленных цехах - это системы автоматического контроля и управления процессами производства. Для исследовательских работ (в атмосфере, под водой, в космосе) такие РТС могут быть оснащены средствами передвижения и защиты от окружающей среды. Мобильные (движущиеся) РТС обеспечивают автоматическое перемещение полезной нагрузки в пространстве. Могут иметь запрограммированный маршрут движения и (или) автоматическое адресование цели. Оснащаются движителями различных типов: колесными, гусеничными, шагающими, водометными, винтовыми, ракетными и т. п. В промышленности применяются для обслуживания складов, межцехового и внутрицехового транспортирования материалов, деталей, инструмента и оснастки. Такие подвижные РТС часто оснащаются манипуляторами. Манипуляционные РТС предназначены для имитации двигательных функций руки человека. Наибольшее развитие и практическое применение они получили в промышленности, где их называют промышленными роботами. Манипуляционные промышленные роботы относят к обширному классу машин, оснащаемых манипуляторами. Манипулятор (М) – устройство, предназначенное для имитации двигательных и рабочих функций руки человека. Метод управления М может быть биотехническим (ручным), интерактивным (смешанным) и автоматическим. Объект манипулирования – тело, перемещаемое в пространстве манипулятором (предметы обработки ПО, инструмент, захватный орган ЗО и т.д.) Структурная схема манипулятора включает следующие элементы: а) задающий орган ЗДО – предназначен для создания управляющих сигналов и движений; б) исполнительный орган ИО – функциональная часть М, предназначенная для совершения действий по сигналам, создаваемым ЗДО; в) связующий орган СО – предназначен для связи ЗДО и ИО, в принципе может отсутствовать; г) рабочий орган РО – часть ИО, предназначенная для реализации технологического назначения М. Рассмотрим биотехнический, интерактивный и автоматический манипуляторы в зависимости от типа ЗДО. Биотехнические М могут быть копирующими, командными и полуавтоматическими. В копирующих М движение РО повторяет движение, например, руки оператора. В командных – управление осуществляется по каждой из степеней подвижности в отдельности путем подачи соответствующих управляющих сигналов оператором. В полуавтоматических – ЗДО содержит механизм (рукоятку), который управляет несколькими степенями свободы и процессор, служащий для преобразования сигналов, поступающих от рукоятки, в команды. Все биотехнические М характеризуются отсутствием памяти и требуют непрерывного участия оператора в процессе управления. Автоматические М работают без участия человека. К ним относятся автооператоры АО, промышленные роботы и М с интерактивным управлением. Автооператор – неперепрограммируемый автоматический М. Промышленный робот –перепрограммируемый автоматический М. Интерактивный М – робот, попеременно управляемый автоматически или оператором, оснащен устройством памяти для автоматического выполнения отдельных действий. В зависимости от формы участия человека интерактивное управление может быть: – автоматизированным, т.е. чередующим во времени автоматические и биотехнические режимы; – супервизорным, в котором все части цикла операций выполняются автоматически и поэтапно, а переходы между этапами задаются оператором. Диалоговое управление – разновидность интерактивного. Поколения промышленных роботов. В настоящее время промышленные роботы делят на 3 основные группы (поколения): 1. Роботы первого поколения. К ним относятся неперепрограммируемые роботы, работающие по жесткой программе: механические руки и роботы с ЧПУ. Эти роботы характеризуются неспособностью адаптироваться к изменяющимся условиям работы и имеют постоянную программу движения не зависимо от наличия объекта манипулирования. Применяются для решения простых производственных задач, требуют жесткого порядка входа в систему (ориентации детали или инструмента в пространстве, заданного времени срабатывания, наличия защитных блокировок и т.п.). Это автооператоры и механические руки. 2. Роботы второго поколения. Это адаптивные, работающие по гибкой программе, оснащенные датчиками внешней среды и визуальными системами роботы. Для управления ими применяют микроЭВМ, микропроцессоры, а в последнее время – контроллеры. Эти роботы используются для решения более сложных задач, ПР 1-го поколения. 3. Роботы третьего поколения. К ним относятся интегральные, или интеллектные (интеллектуальные роботы), которые способны полностью адаптироваться к условиям работы и производства, обладают возможностью автоматического сбора и обработки информации. Управление осуществляется с промышленной ЭВМ с эвристической программой, где оператор программирует только конечную цель, а сами действия и их порядок определяет программа. Важно отметить, что поколения ПР не сменяют друг друга, а дополняют и работают там, где это наиболее целесообразно. ПР 1-го поколения способны заменить порядка 2% рабочих; 2-го поколения – 25-30%; 3-го поколения еще до 30%. Технические требования и параметры ПР Номинальная грузоподъемность mн (кг) представляет собой наибольшую массу объекта манипулирования вместе со схватом, которая гарантирует захватывание и удержание объекта и обеспечивает установленные эксплуатационные характеристики робота. Кроме того, для ПР, работающих в угловой системе координат необходимо указывать номинальный момент нагрузки Тi для соответствующей степени подвижности относительно оси ее перемещения. Это связано с тем, что для рассчитанной грузоподъемности длина схвата потребителем может быть увеличена, что без дополнительных ограничений может привести к выходу из строя соответствующего привода. В некоторых случаях в технической характеристике указывают кроме номинальной грузоподъемности и момента нагрузки максимальные их значения при уменьшенных динамических параметрах (ускорении, скорости). Это связано с тем, что при одном и том же моменте привода, уменьшая ускорения, и следовательно, инерционную нагрузку, можно перемещать большую массу. В этом случае указывают максимальную грузоподъемность для скорости, равной половине максимальной. Число степеней подвижности робота n, под которым подразумевается число степеней свободы рабочего органа относительно звена, принятого за неподвижное, без учета движения губок схвата. Диапазоны перемещений по степеням подвижности: Si (мм), φi (рад). Скорости перемещения по степеням подвижности: максимальные скорости Vmax (м/с), ωmax (1/с). Средняя (цикловая) скорость характеризует производительность робота и равна значению перемещения, деленному на время движения между позициями. Максимальное ускорение по степеням подвижности: amax (м/с2), εmax (град/с2). Погрешность позиционирования рабочего органа Δ (мм) – отклонение фактического положения схвата от заданного программой. Различают роботы с малой точностью позиционирования (Δ › ± 1 мм), способные выполнять транспортные и некоторые основные технологические операции (окраску), не требующие высокой точности; роботы со средней точностью позиционирования (0,1≤Δ≤1 мм), которые находят самое широкое применение; роботы с высокой точностью позиционирования (Δ≤0,1 мм), применяемые для прецизионной сборки. Кинематическая структура манипулятора определяет число звеньев и тип кинематических пар их соединения. Рабочая зона робота – пространство, в котором может находиться его рабочий орган. Объем рабочей зоны Vрз (м3) – объем, заключенный внутри границ рабочей зоны. Тип системы координат определяется сочетанием кинематических пар. Тип системы программного управления (СПУ) определяется способом позиционирования (цикловой, позиционный, контурный) и типом применяемых аппаратных средств. Объем памяти СПУ представляет собой число кадров программы. Под кадром понимают минимальный элемент программы, состоящий из определенной группы команд и адресов, по которым выполняются команды и обеспечивается проверка их выполнения. В цикловой СПУ в состав кадра входят команды на перемещение степеней подвижности робота, управления технологическим оборудованием и вспомогательные команды. В позиционную систему СПУ дополнительно входят данные о положении и скорости перемещений степеней подвижности манипулятора, точности позиционирования объекта манипулирования. Цикловые СПУ характеризуются малым объемом памяти (до 100 кадров). Средним объемом памяти (от 1200 до 800 кадров) характеризуются позиционные СПУ и большим (свыше 800 кадров) – контурные СПУ. Габаритные размеры L, B, H (м). Масса робота, манипулятора, СПУ соответственно mp, mм, mСПУ (кг). Средняя наработка на отказ t (час) – показатель ремонтопригодности, равный среднему значению времени, затраченному на отыскание и устранение одного устойчивого отказа при работе робота. В перспективе следует закладывать конструктивные решения, обеспечивающие среднее время восстановления не более 4,0 ч при средних наработках на отказ t ≥ 1000 ч и 8,0 ч при средних наработках на отказ t ≥ 3000 ч. Средний срок сохраняемости tсохр (ч) – показатель, равный среднему значению календарной продолжительности хранения робота. Средний ресурс tр (ч) – показатель долговечности; рассчитывается как среднее значение времени использования до принятого предельного состояния (капитального ремонта, списания). Чаще всего значение среднего ресурса устанавливается до капитального ремонта. Ресурс большинства отечественных роботов составляет 8000…9000 ч, иногда 10000 ч. Состав и режимы работы роботов. Функциональная схема ПР (Рис.1): В состав ПР входят следующие основные части: – манипулятор, или иначе механическая система робота; – информационная система (ИС); – система программного управления (СПУ), или иначе устройство управления; В совокупности информационная система и система программного управления образуют устройство автоматического управления (УАУ). Манипуляторы ПР содержат рабочий орган в виде захватного устройства (УЗ), сварочной головки, краскораспылителя и т.п. и механизмы, необходимые для выполнения всех его двигательных функций: – передаточные механизмы; – исполнительные механизмы; – приводы; – несущие элементы. Рис. 1 – Функциональная схема ПР.
Исполнительный механизм ПР с приводом и захватным устройством называют рукой манипулятора (Р). Для перемещения М относительно технологического оборудования (ТО) используются устройства передвижения (УП). Все манипуляционные устройства характеризуются маневренностью и коэффициентом сервиза (КС), под которым понимают возможность подхода РО к заданной точке с разных направлений. КС дает представление о двигательных возможностях М, т.е о его маневренности. Маневренность М – это число степеней подвижности при фиксированном положении РО, которая определяет возможность обхода манипулятором препятствий в рабочем объеме и способность к выполнению сложных операций. Движения М подразделяются на группы. Так, например, движения М, снабженного наиболее распространенным в ПР РО в виде УЗ бывают следующих видов: – ориентирующие перемещения УЗ, соизмеримые с его размерами; – транспортирующие перемещения, определяемые размерами звеньев руки и соизмеримые с размерами рабочего объема; – координатные перемещения на расстояния, превышающие размеры ПР и размеры рабочего объема. В состав ИС входят чувствительные (сенсорные) устройства внешней среды, система внутренней диагностики и устройства контроля и блокировок. ИС обеспечивает сбор, первичную обработку и перевод в СПУ данных о функционировании механизмов М робота и о состоянии внешней среды. СПУ предназначена для формирования и выдачи управляющих воздействий исполнительным механизмам М в соответствии с управляющей программой. Под перепрограммируемыми устройствами СПУ понимают такие, которые обеспечивают изменение последовательности и (или) значений перемещений по степеням подвижности и управляющих функций на пульте управления. Это изменение управляющей программы может быть выполнено автоматически или при помощи оператора. СПУ содержит: пульт управления (ПУ), с помощью которого оператор осуществляет ввод и контроль задания; запоминающее устройство (ЗУ), в котором хранится вся необходимая информация, включая программы работ; вычислительное устройство (ВУ), реализующее алгоритм управления манипулятором; блок управления приводами (БУП) механизмов манипулятора. Из схемы видно, что ПР и ТО включены в единый цикл работы и содержат общий пульт управления всем ТП. Возможны два варианта режима работы ПР: режим программирования (режим обучения), при котором в запоминающее устройство вводится управляющая программа, и режим выполнения технологических операций (режим работы). Классификация промышленных роботов. По способу управления различают: – роботы с программным управлением, работающие по заранее заданной жесткой программе (роботы первого поколения); – роботы с адаптивным управлением, которые имеют средства очувствления и поэтому могут работать в заранее не регламентированных и меняющихся условиях, например, брать произвольно расположенные предметы, обходить препятствия и т. д. (роботы второго поколения); – роботы с интеллектуальным управлением (с искусственным интеллектом), которые наряду с очувствлением имеют систему обработки внешней информации, обеспечивающую им возможность интеллектуального поведения, подобного поведению человека в аналогичных ситуациях (роботы третьего поколения). Управление движением по отдельным степеням подвижности может быть непрерывным (контурным) и дискретным (позиционным). В последнем случае управление движением осуществляют, задавая конечную последовательность точек и последующее перемещение по ним шагами от точки к точке. Простейшим вариантом дискретного управления является цикловое, при котором количество точек позиционирования по каждой степени подвижности минимально ичаще всегоограничено двумя — начальной и конечной координатами. По назначению ПР могут быть разделены на несколько групп, из которых самый большой класс по распространению составляют ПР, предназначенные для автоматизации процессов машиностроения. Кроме того различают роботы для горнодобывающей и нефтяной промышленности (обслуживание бурильных установок, монтажные и ремонтные работы), металлургии, в строительстве (монтажные, отделочные, транспортные работы), в легкой, пищевой, рыбной промышленности. В последние годы роботы были внедрены на транспорте (включая создание шагающих транспортных машин), в сельское хозяйство, здравоохранение и в военной отрасли. В машиностроении ПР различают на по следующим группам: – для обслуживания процессов литейного производства (литейные); – для обслуживания процессов сборочного производства (сборочные); – для обслуживания процессов механической обработки; – для автоматизации штамповочного производства (прессовые); – для обслуживания процессов сварочных робот (сварочные). Наибольшее распространение в промышленности ПР получили прежде всего в машиностроении. По степени специализации все ПР вне зависимости от их назначения делятся на три типа: универсальные, специализированные и специальные. – универсальные (многоцелевые) роботы предназначены для выполнения разных операций и в том числе для работы совместно с разными видами ТО; – специализированные (целевые) роботы имеют более узкое назначение и осуществляют одну определенную операцию (например, сварку, окраску, обслуживание оборудования определенного вида); – специальные роботы выполняют только одну конкретную операцию (например, обслуживают конкретную модель технологического оборудования); По характеру выполняемых операций все ПР оделяться на 3 группы: – производственные (технологические), которые выполняют основные операции ТП и непосредственно в нем учувствуют в качестве производящих или обрабатывающих машин (сварочные, сборочные и т.д.); – подъемно-транспортные (вспомогательные), которые применяются для обслуживания основного ТО для выполнения вспомогательных операций, а также на транспортно-складских операциях; – универсальные – выполняют разнородные основные и вспомогательные ТО. По типу привода. Приводы, используемые в роботах, делятся на: – электрический; – гидравлический; – пневматический; – и пневмогидравлический. Часто их применяют в комбинации, например, в звеньях манипулятора большой грузоподъемности используют гидравлический привод, а в его захватном устройстве — более простой и маломощный пневматический. По грузоподъемности ПР делятся на: – сверхлегкие – до 1 кг; – легкие – до 10 кг; – средние – до 100 кг; – тяжелые –до 1000 кг; – и сверхтяжелые – свыше 1000 кг. Грузоподъемность робота обусловливается грузоподъемностью его манипуляторов, а при наличии нескольких манипуляторах — грузоподъемностью наиболее мощного из них. По количеству манипуляторов ПР бывают: – одноманипуляторные (однорукие); – двурукие; – трехрукие; – четырехрукие. Обычно количество М у роботов ограничено одним. Обычно манипуляторы многорукого робота выполняют одинаковыми, но существуют конструкции роботов с разными М. Например, ПР для обслуживания прессов холодной штамповки с двумя разными М: один основной — для взятия заготовки и установки ее на пресс и другой упрощенной конструкции — для выполнения более простой операции сталкивания готовой детали в бункер. Классификация роботов по быстродействию и точности движений. Эти параметры взаимосвязаны и характеризуют динамические свойства роботов. В робототехнике они являются главными. Быстродействие манипулятора определяется скоростью его перемещения по отдельным степеням подвижности. Быстродействие роботов общего применения можно разбить на три следующие группы: – малое – при линейных скоростях по отдельным степеням подвижности до 0,5 м/с; – среднее — при линейных скоростях свыше 0,5 до 1 м/с; – высокое — при линейных скоростях свыше 1 м/с. Большинство современных роботов имеют среднее быстродействие и только 20 % их общего парка — высокое быстродействие. Быстродействие современных роботов является пока недостаточным и требуется увеличить его по крайней мере вдвое. Основная трудность здесь связана с известным противоречием между быстродействием и точностью. Точность манипулятора характеризуется результирующей погрешностью позиционирования (при дискретном движении) или отработки заданной траектории (при непрерывном движении). Чаще всего точность роботов характеризуют абсолютной погрешностью. Точность роботов общего применения подразделяют на три группы: – малая — при линейной погрешности от 1 мм и выше; – средняя — при линейной погрешности от 0,1 до 1 мм; – высокая — при линейной погрешности менее 0,1 мм. По числу степеней подвижности. Число степеней подвижности – это сумма возможных координатных перемещений объекта манипулирования относительно опорной системы. По способу размещения ПР бывают стационарные и подвижные (передвижные) и подразделяются на напольные, подвесные (перемещаются по поднятому рельсовому пути) и встраиваемыми в другое оборудование (например, в обслуживаемый станок) и т. д. Подвижность робота определяется наличием или отсутствием у него устройства передвижения. Параметры, определяющие технический уровень роботов. Наряду с классификационными параметрами роботы характеризуются параметрами, которые обусловливают их технический уровень. К ним относятся и некоторые из рассмотренных выше параметров, которые могут иметь количественное выражение: – быстродействие; – точность, объем памяти; – число каналов связи с внешним оборудованием и др. При использовании этих параметров для классификации роботов их разбивают на группы и т.о. определяют тип робота, а сравнительную оценку его технического уровня производят исходя из конкретных численных значений следующих параметров: – надежность; – число одновременно работающих степеней подвижности; – время программирования; – удельная грузоподъемность, отнесенная к массе робота; – выходная мощность манипулятора - произведение грузоподъемности на скорость перемещения, отнесенная к мощности его приводов; – относительные оценки габаритных параметров, манипуляционных кинематических и динамических характеристик, управляемости робота, возможностей программирования, экономической эффективности и т. п. Системы координат промышленных роботов. Система координат (СК), или система координатных перемещений, ПР определяет кинематику основных движений и форму рабочей зоны (зоны обслуживания манипулятора). Системы координат бывают двух видов: прямоугольные и криволинейные. 1. Плоская прямоугольная СК.
2. Пространственная прямоугольная СК.
3. Плоская полярная СК.
4. Цилиндрическая СК.
5. Сферическая (полярная) СК.
Плоские полярные, цилиндрические и сферические перемещения объекта манипулирования являются наиболее распространенными в криволинейной СК. Разновидностью последней являются ангулярная (угловая) плоская и ангулярная пространственная (цилиндрическая или сферическая) СК.
Рис. 7 7. Ангулярная цилиндрическая СК.
8. Ангулярная сферическая СК.
Рис. 9 Число степеней подвижности ПР Каждый ПР включает большую группу механизмов, связанных в общую кинематическую цепь. Как правило, каждый такой механизм имеет свой собственный привод и обеспечивает движение одной степени подвижности. Число степеней подвижности (W) ПР определяет число степеней свободы его полной кинематической цепи относительно звена, принятого за неподвижное, например, относительно неподвижной стойки или основания. Другими словами это сумма возможных координатных перемещений объекта манипулирования относительно неподвижного звена. Причем, при определении числа степеней подвижности принято не учитывать движение захватного устройства (УЗ) при захвате объекта манипулирования. В общем виде для пространственной кинематической цепи число степеней подвижности ПР определяется по формуле Сомова-Малышева W=6n-5p5-4p4-3p3-2p2-p1 (1) где n – общее число подвижности звеньев p1 – p5 – число кинематических пар соответственно I и V классов. Для плоской кинематической цепи число степеней подвижности определяется по формуле П.Л. Чебышева: W=3n-2p5-p4 (2) ПР с 1…3 степенями подвижности, используются при автоматизации несложных технологических процессов для повторяющихся операций. ПР для более сложных, часто перепрограммируемых процессов могут иметь до 5…6 степеней подвижности.
|