Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Распознавание по расстояниям в n-мерном пространстве





Эталонные изображения Х1, X2,...,Хт некоторого числа т различных классов изображений или образов в n -мерном пространстве задаются в виде точек (x11, x12, …, x1n), (x21, x22, …, x2n),..., (xm1, xm2, …, xmn). Любое входное изображение Si также представляется в виде точки (xsi1, xsi2,, …, xsin) в этом пространстве. Принадлежность входного изображения Sk к одному из т классов определяется с помощью расстояний между точкой Si и всеми точками Х1, X2,...,Хт соответствующими эталонным образам. Расстояние и является мерой сходства входного изображения с эталонами классов или образов. Входное изображение относится к тому образу, расстояние до эталонного изображения которого минимально, т.е. решающим правилом является следующее соотношение

(1)

В теории распознавания образов часто используются расстояния по Евклиду (2) и по Минковскому (3):

(2)

(3)

где λ целое положительное число, большее двух.

Операции возведения в степень и извлечения корня не всегда удобно использовать при определении расстояний, поскольку они являются нелинейными операциями. Поэтому для определения расстояний в пространстве изображений часто используется и сумма модулей разностей между соответствующими компонентами n -мерных векторов:

(4)

В выражения (2) - (4) разности всех компонентов векторов входят с одинаковыми единичными весами. В тех случаях, когда компоненты векторов, соответствующих распознаваемым изображениям, отличаются на порядки, например, одни компоненты векторов измеряются метрами, а другие — сантиметрами или миллиметрами, то при использовании расстояний (2) — (4) компоненты, имеющие небольшие численные значения, могут практически не влиять на величину расстояний. В то же время с точки зрения решения реальных задач распознавания именно эти компоненты могут играть определяющую роль. Поэтому для более адекватного учета подобных компонент в выражения (2) — (4) могут вводиться весовые коэффициенты, учитывающие практическую ценность различных компонент вектора. В этом случае выражения (2) — (4) преобразуются к виду:

(5)

(6)

(7)

Предварительное задание весовых коэффициентов в формулах, определяющих расстояния, требует наличия определенной априорной информации и не всегда может быть сделано оптимальных образом. Поэтому особый интерес представляют расстояния, в которых заложена идея выравнивания весов слагаемых от различных компонент, если они существенно отличаются по своим абсолютным значениям. Примером такого расстояния является расстояние по Камберру:

(8)







Дата добавления: 2015-09-19; просмотров: 429. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия