Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение. Найдем сначала стационарные точки, т.е





Найдем сначала стационарные точки, т.е. те точки, в которых частные производные одновременно равны нулю.

Изменим порядок во втором уравнении и приведем систему линейных уравнений к стандартному виду, чтобы ее можно было решить методом Крамера.

Нашли одну стационарную точку, в которой , это точка .

Выясним с помощью вторых производных, есть ли в экстремум и, если есть, какой.

Составляем определитель .

Так как , то экстремум существует. Так как , то в стационарной точке функция имеет минимум. Найдем его.

.

Ответ: .

 

Контрольные варианты к задаче 5.

Исследовать на экстремум:

1. 2.
3. 4.
5. 6.
7. 8.
9. 10.
11. 12.
13. 14.
15. 16.
17. 18.
19. 20.
21. 22.
23. 24.
25. 26.
27. 28.
29. 30.

 

Элементы скалярного поля

 

Производная скалярного поля по направлению вектора

(рис.3). определяется так: – это скорость изменения скалярного поля в направлении вектора .  
z

 

 

M0

M β

α

 

0 у

 

x Рис. 3

 

Пример 9. Найти скорость изменения скалярного поля в точке в направлении от этой точки к точке .

Решение. Скорость изменения скалярного поля в направлении вектора в точке определяют по формуле

.

 

В задаче , ,

.

 

,

 

,

 

.

 

Подставим все найденные величины в первую формулу:

 

.

Ответ: В заданном направлении данное скалярное поле убывает со скоростью .

 

Градиент скалярного поля – вектор

 

.

Очевидно,

 

 

(рис. 7).
P0 φ

 

Рис. 7

Пример 10. Найти величину градиента скалярного поля в точке .







Дата добавления: 2015-09-19; просмотров: 764. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия