Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основные правила дифференцирования





 

2) (U(x)±V(x))¢=U¢(x)±V¢(x)

3)(U(x)×V(x))¢=U¢(x)V(x)+U(x)V¢(x)

4) =

5) (CU(x))¢=C(U(x))¢

 

 

1. C¢=0  
2. x’=1  
3. (xn)¢=nxn-1 (un)¢=nun-1
4. (cosx)¢=-sinx (cosu)¢=-sinu u¢
5. (sinx)¢=cosx (sinu)¢=cosu u¢
6. (tgx)¢= (tgu)¢=
7. (ctgx)¢=- (ctgu)¢=-
8. (arctgx)¢= (arctgu)¢=
9. (arcctgx)¢=- (arcctgu)¢=-
10. (arcsinx)¢= (arcsinu)¢=
11. (arccosx)¢=- (arcosu)¢=-
12. (ax)¢=axlna (au)¢=aulna u¢
13. (ex)¢=ex (eu)¢=eu
14. (logax)¢= (logau)¢=
15. (lnx)¢= (lnu)¢=

 

Пример 2. .

Пример 3. Для найти

Воспользуемся формулой:

(U(x)×V(x))¢=U¢(x)V(x)+U(x)V¢(x), где .Тогда для , .

Пример 4. Для найти .

Воспользуемся формулой:

= , где .

Пример 5. Для найти .

Это сложная функция. Можно представить данную функцию как , где . Зная, что , получим:

.

Пример 6. Для найти .

Это сложная функция. Можно представить данную функцию как , где . Зная, что , получим:

.

Пример 7. Для найти .

Это сложная функция. Можно представить данную функцию как , где . Зная, что , получим:

Пример 8. Для найти .

Это сложная функция. Можно представить данную функцию как , где . Зная, что , получим:

Задача 1. Найти производные функций:

1) .

.

Можно представить данную функцию как , где . Зная, что , получим

Ответ: .

 

2) .

.

Можно представить , где . Причем , в результате получим

Ответ: .

3) .

.

После подстановок получим

.

Ответ: .

 

4) .

, если воспользоваться правилом .

Ответ: .

 

Контрольные варианты к задаче 1.

Найти производные функций:

1. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  
   
2. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  
         

 

3. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  

 

 

4. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  

 

 

5. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  

 

 

6. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  
7. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  
         

 

 

8. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  

 

 

9. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  
 
10. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  
 
11. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  
               

 

12. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  

 

 

13. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  
   
14. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  
15. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  
           

 

 

16. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  

 

17. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  
   
18. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  
         

 

19. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  

 

 

20. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  

 

 

21. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  

 

 

22. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  
23. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  
         

 

 

24. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  

 

 

25. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  
 
26. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .    
 
27. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  
                 

 

 

28. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  

 

 

29. 1) ; 2) ; 3) ;  
4) ; 5) ; 6) ;  
7) ; 8) ; 9) ;  
10) .    
     
30. 1) ; 2) ; 3) ;  
4) ; 5) ; 6) ;  
7) ; 8) ; 9) ;  
   
10) .    
             

 

 

Задача 2. Исследовать на экстремум функцию .

Решение. Найдем точки, подозрительные на экстремум. Для этого возьмем производную и приравняем ее нулю.

при .

 

На тех интервалах, где , функция убывает; где , функция возрастает. Поэтому интервалы возрастания функции и , интервалы убывания функции и .

По рисунку видно, что в точках и функция принимает свои минимальные значения, а при - максимальное. Найдем эти значения:

Ответ: .

 

Контрольные варианты к задаче 2.

Исследовать на экстремум:

1. 1) ; 2) .
2. 1) ; 2) .
3. 1) ; 2) .
4. 1) ; 2) .
5. 1) ; 2) .
6. 1) ; 2) .
7. 1) ; 2) .
8. 1) ; 2) .
9. 1) ; 2) .
10. 1) ; 2) .
11. 1) ; 2) .
12. 1) ; 2) .
13. 1) ; 2) .
14. 1) ; 2) .
15. 1) ; 2) .
16. 1) ; 2) .
17. 1) ; 2) .
18. 1) ; 2) .
19. 1) ; 2) .
20. 1) ; 2) .
21. 1) ; 2) .
22. 1) ; 2) .
23. 1) ; 2) .
24. 1) ; 2) .
25. 1) ; 2) .
26. 1) ; 2) .
27. 1) ; 2) .
28. 1) ; 2) .
29. 1) ; 2) .
30. 1) ; 2) .

Задача 3. Найти наибольшее и наименьшее значения функции на отрезке .

Решение. Так как свои наименьшее и наибольшее значения непрерывная на отрезке функция может принимать либо на концах этого отрезка, либо в точках экстремума, входящих в этот отрезок, то находим значения исследуемой функции во всех этих точках и среди них выбираем наибольшее и наименьшее значения.

при ;

.

Найдем значение функции только при так как .

.

Выбираем наибольшее значение функции из найденных трех чисел; это 10. Теперь наименьшее – это 3.

Ответ:

Контрольные варианты к задаче 3.

Найти наибольшее и наименьшее значения функции:

1. на отрезке .
2. на отрезке .
3. на отрезке .
4. отрезке .
5. на отрезке
6. на отрезке
7. на отрезке .
8. на отрезке .
9. на отрезке .
10. на отрезке .
11. на отрезке .
12. на отрезке .
13. на отрезке .
14. на отрезке .
15. на отрезке .
16. на отрезке .
17.




Дата добавления: 2015-09-19; просмотров: 386. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Studopedia.info - Студопедия - 2014-2025 год . (0.015 сек.) русская версия | украинская версия