Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основные правила дифференцирования





 

2) (U(x)±V(x))¢=U¢(x)±V¢(x)

3)(U(x)×V(x))¢=U¢(x)V(x)+U(x)V¢(x)

4) =

5) (CU(x))¢=C(U(x))¢

 

 

1. C¢=0  
2. x’=1  
3. (xn)¢=nxn-1 (un)¢=nun-1
4. (cosx)¢=-sinx (cosu)¢=-sinu u¢
5. (sinx)¢=cosx (sinu)¢=cosu u¢
6. (tgx)¢= (tgu)¢=
7. (ctgx)¢=- (ctgu)¢=-
8. (arctgx)¢= (arctgu)¢=
9. (arcctgx)¢=- (arcctgu)¢=-
10. (arcsinx)¢= (arcsinu)¢=
11. (arccosx)¢=- (arcosu)¢=-
12. (ax)¢=axlna (au)¢=aulna u¢
13. (ex)¢=ex (eu)¢=eu
14. (logax)¢= (logau)¢=
15. (lnx)¢= (lnu)¢=

 

Пример 2. .

Пример 3. Для найти

Воспользуемся формулой:

(U(x)×V(x))¢=U¢(x)V(x)+U(x)V¢(x), где .Тогда для , .

Пример 4. Для найти .

Воспользуемся формулой:

= , где .

Пример 5. Для найти .

Это сложная функция. Можно представить данную функцию как , где . Зная, что , получим:

.

Пример 6. Для найти .

Это сложная функция. Можно представить данную функцию как , где . Зная, что , получим:

.

Пример 7. Для найти .

Это сложная функция. Можно представить данную функцию как , где . Зная, что , получим:

Пример 8. Для найти .

Это сложная функция. Можно представить данную функцию как , где . Зная, что , получим:

Задача 1. Найти производные функций:

1) .

.

Можно представить данную функцию как , где . Зная, что , получим

Ответ: .

 

2) .

.

Можно представить , где . Причем , в результате получим

Ответ: .

3) .

.

После подстановок получим

.

Ответ: .

 

4) .

, если воспользоваться правилом .

Ответ: .

 

Контрольные варианты к задаче 1.

Найти производные функций:

1. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  
   
2. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  
         

 

3. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  

 

 

4. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  

 

 

5. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  

 

 

6. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  
7. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  
         

 

 

8. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  

 

 

9. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  
 
10. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  
 
11. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  
               

 

12. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  

 

 

13. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  
   
14. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  
15. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  
           

 

 

16. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  

 

17. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  
   
18. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  
         

 

19. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  

 

 

20. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  

 

 

21. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  

 

 

22. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  
23. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  
         

 

 

24. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  

 

 

25. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  
 
26. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .    
 
27. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  
                 

 

 

28. 1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
7) ; 8) ; 9) ;
10) .  

 

 

29. 1) ; 2) ; 3) ;  
4) ; 5) ; 6) ;  
7) ; 8) ; 9) ;  
10) .    
     
30. 1) ; 2) ; 3) ;  
4) ; 5) ; 6) ;  
7) ; 8) ; 9) ;  
   
10) .    
             

 

 

Задача 2. Исследовать на экстремум функцию .

Решение. Найдем точки, подозрительные на экстремум. Для этого возьмем производную и приравняем ее нулю.

при .

 

На тех интервалах, где , функция убывает; где , функция возрастает. Поэтому интервалы возрастания функции и , интервалы убывания функции и .

По рисунку видно, что в точках и функция принимает свои минимальные значения, а при - максимальное. Найдем эти значения:

Ответ: .

 

Контрольные варианты к задаче 2.

Исследовать на экстремум:

1. 1) ; 2) .
2. 1) ; 2) .
3. 1) ; 2) .
4. 1) ; 2) .
5. 1) ; 2) .
6. 1) ; 2) .
7. 1) ; 2) .
8. 1) ; 2) .
9. 1) ; 2) .
10. 1) ; 2) .
11. 1) ; 2) .
12. 1) ; 2) .
13. 1) ; 2) .
14. 1) ; 2) .
15. 1) ; 2) .
16. 1) ; 2) .
17. 1) ; 2) .
18. 1) ; 2) .
19. 1) ; 2) .
20. 1) ; 2) .
21. 1) ; 2) .
22. 1) ; 2) .
23. 1) ; 2) .
24. 1) ; 2) .
25. 1) ; 2) .
26. 1) ; 2) .
27. 1) ; 2) .
28. 1) ; 2) .
29. 1) ; 2) .
30. 1) ; 2) .

Задача 3. Найти наибольшее и наименьшее значения функции на отрезке .

Решение. Так как свои наименьшее и наибольшее значения непрерывная на отрезке функция может принимать либо на концах этого отрезка, либо в точках экстремума, входящих в этот отрезок, то находим значения исследуемой функции во всех этих точках и среди них выбираем наибольшее и наименьшее значения.

при ;

.

Найдем значение функции только при так как .

.

Выбираем наибольшее значение функции из найденных трех чисел; это 10. Теперь наименьшее – это 3.

Ответ:

Контрольные варианты к задаче 3.

Найти наибольшее и наименьшее значения функции:

1. на отрезке .
2. на отрезке .
3. на отрезке .
4. отрезке .
5. на отрезке
6. на отрезке
7. на отрезке .
8. на отрезке .
9. на отрезке .
10. на отрезке .
11. на отрезке .
12. на отрезке .
13. на отрезке .
14. на отрезке .
15. на отрезке .
16. на отрезке .
17.




Дата добавления: 2015-09-19; просмотров: 386. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия