Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дифференцирование функций нескольких переменных





Частные производные функции

а) первого порядка: ,

где - частное приращение z по х.

,

где - частное приращение z по y.

б) второго порядка: - вторая производная функции z по переменной x, т. е. частная производная по переменной х, взятая от частной производной первого порядка по переменной х.

- смешанная производная z по х и по у;

- смешанная производная z по у и по х.

Можно показать, что порядок дифференцирования безразличен, т. е. ;

- вторая производная функции z по переменной y.

Правило. Отыскивая частные производные функции нескольких переменных по одной из переменных, пользуемся правилами и формулами дифференцирования, считая в этот момент все остальные переменные постоянными.

Пример 3. Найти частные производные первого порядка следующих функций:

а) .

,

отыскивая , переменную у считаем постоянной.

,

отыскивая , переменную х считаем постоянной.

 

б) .

отыскивая , переменную у считаем постоянной.

отыскивая , переменную х считаем постоянной.

Пример 4. Доказать следующие тождества:

а) , если .

Решение. Найдем данной функции и подставим их в равенство, которое надо доказать:

отыскивая , переменную у считаем постоянной..

,

отыскивая , переменную х считаем постоянной.

Следовательно

что и требовалось доказать.

Пример 5. Найти и функции .







Дата добавления: 2015-09-19; просмотров: 428. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия