Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задача 8.3.





 

1.Выборку значений СВ Х, указанную в условии задачи 8.1 сгруппировать, разбивая отрезок [a,b] (а = min хi; b = max хi) на 5 интервалов с границами

и подсчитать частоты интервалов.

2. Предполагая, что Х распределена по нормальному закону и принимая в качестве параметров М[X], s[X] их оценки , s вычислить теоретические частоты интерва-лов.

3. С помощью критерия согласия Пирсона при уровне значимости α =0.1 проверить, согласуются ли выборочные данные с гипотезой о нормальном распределении величины Х. Число степеней свободы принять равным трём.

Решение. 1. Из статистического ряда задачи 8.1видно, что а=min xi = 2, в = max xi = =10, поэтому (в-а)/5=1.6 и границы интервалов будут ξ0 = 2, ξ1 = 2+1.6=3.6, ξ2 = =3.6+1.6=5.2, ξ3 = 5.2+1.6=6.8, ξ4 = 6.8+1.6= 8.4, ξ5 = 8.4+1.6=10.

Эмпирическая частота rj интервала (j =0,..,4) подсчитывается с помощью ряда как число наблюдений, попавших в интервал, отнесённое к объёму выборки n. Так, в первый (j =0) интервал [2;3.6] попало 4+10=14 значений, поэтому r0 = = 14/100 =0.14. Aналогично, r1= 0.21, r2=0.3, r3=0.2, r4=0.15.

2. Примем в качестве параметров нормального распределения Х вычисленные в задаче8.1 значения точечных оценок

M[X] = = 6.23, s[X] = s = 2.06

Теоретические частоты интервалов (j =0,1,..,4) являются вероятностями

С помощью таблиц интеграла Лапласа находим

3. Вычисляем значение

По таблице распределения χ2 Пирсона для доверительной вероятности g = 1-α = 0.9 и числа степеней свободы n = 3 находим значение . Поскольку гипотезу о нормальном распределении СВ Х следует считать не противоречащей выборочным данным.

 







Дата добавления: 2015-09-19; просмотров: 701. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия