Задача 8.3.
1.Выборку значений СВ Х, указанную в условии задачи 8.1 сгруппировать, разбивая отрезок [a,b] (а = min хi; b = max хi) на 5 интервалов с границами и подсчитать частоты интервалов. 2. Предполагая, что Х распределена по нормальному закону и принимая в качестве параметров М[X], s[X] их оценки , s вычислить теоретические частоты интерва-лов. 3. С помощью критерия согласия Пирсона при уровне значимости α =0.1 проверить, согласуются ли выборочные данные с гипотезой о нормальном распределении величины Х. Число степеней свободы принять равным трём. Решение. 1. Из статистического ряда задачи 8.1видно, что а=min xi = 2, в = max xi = =10, поэтому (в-а)/5=1.6 и границы интервалов будут ξ0 = 2, ξ1 = 2+1.6=3.6, ξ2 = =3.6+1.6=5.2, ξ3 = 5.2+1.6=6.8, ξ4 = 6.8+1.6= 8.4, ξ5 = 8.4+1.6=10. Эмпирическая частота rj интервала (j =0,..,4) подсчитывается с помощью ряда как число наблюдений, попавших в интервал, отнесённое к объёму выборки n. Так, в первый (j =0) интервал [2;3.6] попало 4+10=14 значений, поэтому r0 = = 14/100 =0.14. Aналогично, r1= 0.21, r2=0.3, r3=0.2, r4=0.15. 2. Примем в качестве параметров нормального распределения Х вычисленные в задаче8.1 значения точечных оценок M[X] = = 6.23, s[X] = s = 2.06 Теоретические частоты интервалов (j =0,1,..,4) являются вероятностями С помощью таблиц интеграла Лапласа находим 3. Вычисляем значение По таблице распределения χ2 Пирсона для доверительной вероятности g = 1-α = 0.9 и числа степеней свободы n = 3 находим значение . Поскольку гипотезу о нормальном распределении СВ Х следует считать не противоречащей выборочным данным.
|