Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Методические указания по выполнению задачи 2





1. Проработать материал, изложенный в [1,т.1. §4.1-4.10,§5.1-5.24,§6.1-6.9].

2. Расчет линейных электрических схем синусоидального тока аналогичен рас­чету схем постоянного тока. Для схем постоянного тока уравнения составляют по действительным значениям нап­ряжений, токов, сопротивлений и проводимостей. В схемах же синусоидального тока для алгебраизации интегродифференциальных уравнений применяют комплексные (символические) величины:

.

При этом все параметры записывают в виде комплексных чисел в алгебраиче­ской, показательной или тригонометрической форме. При переходе от интегродифференциальных уравнений дифференцирование мгновенного значения заме­няют умножением jw на соответствующую комплексную величину, а интегриро­вание - делением комплексной величины на jw.

,

если .

Изображение синусоидальных функций времени комплексными величинами позволяет использовать для расчета цепей переменного тока методы расчета цепей постоянного тока: уравнения Кирхгофа и Ома, метод экви­валентных преобразований, метод контурных токов, метод узловых потенциалов, метод наложения, метод эквивалентного генератора и т.д.

3. При составлении системы уравнений по законам Кирхгофа руководствоваться следующим. Заданная схема (рис. 1.2) содержит два узла и три ветви. Значит всего уравнений должно быть три, из них по первому закону Кирхгофа - одно и по второму -два.

Для выбранных направлений токов и обходов контуров (рис. 1.2) система уравнений в дифференциальной форме имеет вид:

узел а:

контур 1

 
 

контур 2 .

 

 

Уравнения в символической форме:

узел а:

контур 1

контур 2

4. Система уравнений по методу контурных токов.

Определяется количество независимых контуров (nв-nу+1). Для схемы на рис.1.2 выбираются два независимых контура и задается направление контурных токов в них , (рис. 1.2).

Система расчетных уравнений имеет вид:

где

Согласно выбранным направлениям токов (в ветвях и контурных токов), токи ветвей определяются уравнениями

5. В схеме (рис. 1.2) всего один независимый узел, поэтому по методу узловых потенциалов составляется одно уравнение (принимаем

где

Токи в ветвях через потенциалы узлов определяются уравнениями

.

6. Для расчета токов в ветвях (рис. 1.2) можно воспользоваться методом узловых потенциалов, как наиболее оптимальным (меньшее число расчетных уравнений). Параметры цепи (рис. 1.2): Rl = R2 = R3 = ХС2 = XL3 = 5 Ом; действующие значения Э.Д.С.: Е1 = 4,47 В; ЕЗ = 8 В; начальные фазы φ: φ1=63;40; φ3=00.

Комплексы Э.Д.С:

Правильность расчетов можно проверить по первому закону Кирхгофа.

İ;1- İ;2- İ;3=0;

-0.2+ j 0.8-0.3- j 0.3+0.5- j 0.5=0,

Законы изменения токов в ветвях в функции времени

Соответствующие им графики представлены на рис. 1.3.

7. Топографическую диаграмму для электрической схемы строят, откладывая на комплексной плоскости векторы комплексных потенциалов для всех точек схемы. Разность потенциалов (напряжение) между двумя любыми точками схемы, например, между точками а и b , определяется на диаграмме вектором, проведенным из точки b в точку а. Стрелка вектора указывает направление возрастания потенциала.

Алгоритм построения топографической диаграммы.

7.1. Обозначают точки схемы (буквами или цифрами); потенциал какой-либо точки схемы принимают за нулевой (заземляют).

7.2. По найденным токам и параметрам схемы вычисляют потенциалы обозначенных точек схемы при обходе каждой ветви, начиная с точки нулевого потенциала. Если направление обхода пассивного элемента схемы совпадает с направлением тока, протекающего по этому элементу, то потенциал уменьшается на величину напряжения на элементе.

7.3. Выбирают масштабы для токов mI (мм/А) и напряжений mU (мм/В).

7.4. Строят векторную диаграмму токов, откладывая их на комплексной плоскости из начала координат в выбранном масшта­бе.

7.5. Строят комплексные потенциалы в масштабе и полученные точки соединяют в той же последовательности как они определялись.

7.6. Рассмотрим построение векторной диаграммы токов и топографи­ческой диаграммы напряжений для схемы на рис. 1.2.

Пусть

Рис. 1.3

При правильном расчете топографической диаграммы потенциалы точки а, найденные при обходе разных ветвей, должны совпадать.

Векторная диаграмма токов и топографическая диаграмма напряжений, построенные в масштабе по результатам расчета заданной схемы (рис. 1.2) даны на рис. 1.4.

8. Полагая в качестве нагрузки последовательное соединение элементов цепи R3 и L3 определим параметры эквивалентного генератора , (рис. 1.5). Э.Д.С. эквивалентного генератора определяется как на­пряжение в режиме холостого хода , т.е.

В режиме холостого хода (İ3 = 0)

.

Рис. 1.4

Внутреннее сопротивление эквивалентного генератора является входным сопротивлением схемы (рис. 1.5) относительно зажимов а и b при İ3 = 0.

Рис. 1.5

9. При составлении уравнений по законам Кирхгофа с учетом взаимо­индукции между катушками необходимо выяснить как включены эти катушки (согласно или встречно). Катушки считаются включенными согласно, если направление токов в них ориентировано одинаково от­носительно однополярных зажимов катушек.

 
 

Для схемы на рис.1.6 на­правление токов I1 и I2 ориентировано по разному относительно одно­полярных зажимов (в катушке L1 ток направлен от начала катушки к ее концу, а в катушке L2 — наоборот), то есть катушки L1 и L2 включены встречно. Следо­вательно, напряжение взаимоиндукции будет вычи­таться из напряжения самоиндукции, и напряжения на катушках L1 и L2 определяются выражениями

или в символической форме

10. Для выполнения п.10 необходимо для ряда значений изменяемого параметра провести расчет токов любым методом. Идеальным вариан­том в данном случае является применение ЦВМ.

11. Сделать выводы по работе.

 







Дата добавления: 2015-09-19; просмотров: 458. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия