Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение. Для 7 класса. Достаточно взять две карточки и на одной отметить 1,2,3,4, на второй — 5,6,7,8





Для 7 класса. Достаточно взять две карточки и на одной отметить 1,2,3,4, на второй — 5,6,7,8. Если предположить, что карточка Марка совпадает с каждой из карточек Билла не более чем по одному числу, то на карточке Марка отмечены не больше одного из чисел от 1 до 4, не больше одного из чисел от 5 до 8 и ещё, возможно, число 9, то есть максимум три числа.

Одной карточки недостаточно: какие бы четыре числа Билл ни отметил, у Марка могут оказаться четыре числа, ни одно из которых не отмечено Биллом.

 

Для 8 класса. Достаточно взять три карточки и на одной отметить 1,2,3,4, на второй — 5,6,7,8, на третьей — 9,10,11,12. Если предположить, что карточка Марка совпадает с каждой из карточек Билла не более чем по одному числу, то на карточке Марка отмечены не больше одного из чисел от 1 до 4, не больше одного из чисел от 5 до 8 и не больше одного из чисел от 9 до 12, то есть максимум три числа.

Двух карточек недостаточно: на них Билл может отметить максимум 8 разных чисел, но тогда на карточке Марка могут оказаться 4 числа, ни одно из которых не отмечено Биллом.

 

Для 9 класса. Достаточно взять три карточки и на одной отметить числа от 1 до 10, на второй — от 11 до 20, на третьей — от 21 до 30. Если предположить, что карточка Марка совпадает с каждой из карточек Билла не более чем по двум числам, то на карточке Марка отмечены не больше двух из чисел от 1 до 10, не больше двух из чисел от 11 до 20 и не больше двух из чисел от 21 до 30, а также не больше трёх из чисел 31, 32, 33. Итого максимум 2+2+2+3=9 чисел, что меньше 10.

Двух карточек недостаточно: на них Билл может отметить максимум 20 разных чисел, но тогда на карточке Марка могут оказаться 10 чисел, ни одно из которых не отмечено Биллом.

 

 

Критерии. Оценка за задачу складывается из трёх частей:
(1) ответ («достаточно взять три карточки и отметить на них то-то и то-то») — 1 балл (обратите внимание, что выбор отмеченных чисел может быть другим, или просто может быть указано, что все числа различны); ответ, в котором указано только количество карточек, но не описан выбор чисел, не засчитывается;

(2) доказательство того, что для таких карточек найдётся подходящая карточка — максимум 4 балла;
(3) доказательство того, что меньшего количества карточек не хватит — 2 балла.

За систематическое отсутствие слов «не более чем» можно снимать 1–2 балла.

 

 

(10-11)

C. Назовём год лихим, если в записи его номера есть одинаковые цифры. Например, все годы с 1988 по 2012 были лихими. Докажите, что в каждом столетии, начиная с двадцать первого, хотя бы 44 лихих года.

 

Решение. Будем для удобства считать, что столетие начинается с года...xy00 и кончается годом...xy99 (возможно, вместо многоточия ничего нет). На самом деле более правильно считать, что столетие начинается с года...xy01 и кончается годом...uv00; но поскольку годы...xy00 и...uv00 оба лихие, это не влияет на количество лихих лет в столетии.

Заметим, что при x=y все сто лет лихие. Поэтому будем считать, что x≠y.

В таком случае к лихим годам относятся следующие:

...xyxx,...xyyy,...xyxy,...xyyx;

...xyax, где a отлично от x и y (8 штук);

...xyxa, где a отлично от x и y (8 штук);

...xyya, где a отлично от x и y (8 штук);

...xyay, где a отлично от x и y (8 штук);

...xyaa, где a отлично от x и y (8 штук).

Легко убедиться, что все перечисленные годы различны, и их количество равно 44.

 

Графически лихие годы (на примере XXI столетия) показаны в таблице, аналогично выглядят таблицы и для других столетий при x≠y.

 







Дата добавления: 2015-09-15; просмотров: 344. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия