Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Неравенства Белла, экспериментальные проверки неравенств





Предсказываемые теоремой Белла результаты корреляций спина при наличии локального реализма (сплошная линия) и при его отсутствии (точечная синусоида).

Такое состояние дел оказалось не слишком удачным для развития физической теории и практики. «Запутанность» и «жуткие дальнодействия» игнорировались почти 30 лет[7], пока ими не заинтересовался ирландский физик Джон Белл. Вдохновлённый идеями Бома (см. Теория де Бройля — Бома), Белл продолжил анализ ЭПР-парадокса и в 1964 сформулировал свои неравенства. Весьма упрощая математические и физические составляющие, можно сказать, что из работы Белла следовали две однозначно распознаваемые ситуации при статистических измерениях состояний запутанных частиц. Если состояния двух запутанных частиц определены в момент разделения, то должно выполняться одно неравенство Белла. Если состояния двух запутанных частиц неопределены до измерения состояния одной из них, то должно выполняться другое неравенство.

Неравенства Белла предоставили теоретическую базу для возможных физических экспериментов, однако по состоянию на 1964 год техническая база не позволяла ещё их поставить. Первые успешные эксперименты по проверке неравенств Белла были осуществлены Клаузером (англ.)русск. и Фридманом в 1972 году[14]. Из результатов следовала неопределённость состояния пары запутанных частиц до проведения измерения над одной из них. И всё же до 80-х годов XX века квантовая сцепленность рассматривалась большинством физиков «не как новый неклассический ресурс, который можно использовать, а скорее как конфуз, ждущий окончательного разъяснения»[7].

Рис. Схема эксперимента Аспэ 1981 года.

Однако за экспериментами группы Клаузера последовали эксперименты Аспэ в 1981 году. В классическом эксперименте Аспэ (см.рис) два потока фотонов с нулевым суммарным спином, вылетавшие из источника S, направлялись на призмы Николя a и b. В них за счёт двойного лучепреломления происходило разделение поляризаций каждого из фотонов на элементарные, после чего пучки направлялись на детекторы D+ и D–. Сигналы от детекторов через фотоумножители поступали в регистрирующее устройство R, где вычислялось неравенство Белла.

Результаты, полученные как в опытах Фридмана–Клаузера, так и в опытах Аспэ, чётко говорили в пользу отсутствия эйнштейновского локального реализма. «Жуткое дальнодействие» из мысленного эксперимента окончательно стало физической реальностью. Последний удар по локальности был нанесён в 1989 году многосвязными состояниями Гринбергера — Хорна — Цайлингера (англ.) заложившими базис квантовой телепортации. В 2010 году Джон Клаузер Ален Аспэ и Антон Цайлингер стали лауреатами премии Вольфа по физике «за фундаментальный концептуальный и экспериментальный вклад в основы квантовой физики, в частности за серию возрастающих по сложности проверок неравенств Белла (или расширенных версий этих неравенств) с использованием запутанных квантовых состояний»[16].

Современные версии описанного выше эксперимента создают сегменты Sa и Sb такой длины, чтобы регистрация фотонов происходила в заведомо не связанных известными взаимодействиями областях пространства-времени. В 2007 году исследователям из Мичиганского университета удалось разнести запутанные фотоны на рекордное в тот момент расстояние в 1 метр[17].

В 2008 году группе швейцарских исследователей из Университета Женевы удалось разнести два потока запутанных фотонов на расстояние 18 километров. Помимо прочего, это позволило произвести временны́е измерения с недостижимой ранее точностью. В результате было установлено, что если некое скрытое взаимодействие и происходит, то скорость его распространения должна как минимум в 100 000 раз превышать скорость света в вакууме. При меньшей скорости временные задержки были бы замечены.

Летом того же года другой группе исследователей из австрийского Института квантовой оптики и квантовой информации, включая Цайлингера, удалось поставить ещё более масштабный эксперимент, разнеся потоки запутанных фотонов на 144 километра, между лабораториями на островах Ла Пальма и Тенерифе. Обработка и анализ столь масштабного эксперимента продолжаются, последняя версия отчёта была опубликована в 2010 году[19].

В данном эксперименте удалось исключить возможное влияние 1недостаточного расстояния между объектами в момент измерения и 2недостаточной свободы выбора настроек измерения. В результате были ещё раз подтверждены квантовая запутанность и, соответственно, нелокальная природа реальности. Правда, осталось третье возможное влияние —3 недостаточно полной выборки. Эксперимент, в котором все три потенциальных влияния будут исключены одновременно, на сентябрь 2011 года является вопросом будущего.

В большинстве экспериментов с запутанными частицами используются фотоны. Это объясняется относительной простотой получения запутанных фотонов и их передачи в детекторы, а также бинарной природой измеряемого состояния (положительная или отрицательная спиральность).

Явление квантовой запутанности существует и для других частиц и их состояний. В 2010 году международный коллектив учёных из Франции, Германии и Испании получил и исследовал[20] запутанные квантовые состояния электронов, то есть частиц с массой, в твёрдом сверхпроводнике из углеродных нанотрубок. В 2011 году исследователям из Института квантовой оптики общества Макса Планка удалось создать состояние квантовой запутанности между отдельным атомом рубидия и конденсатом Бозе-Эйнштейна, разнесёнными на расстояние 30 метров[21].

При устойчивом английском термине Quantum entanglement, достаточно последовательно использующимся в англоязычных публикациях, русскоязычные работы демонстрируют широкое разнообразие узуса. Из встречающихся в источниках по теме терминов можно назвать (в алфавитном порядке):Запутанные квантовые состояния и зацепленные состояния[22]







Дата добавления: 2015-09-15; просмотров: 1118. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия