Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задание. 1.Причини виникнення автокореляції в економетричних моделях





1.Причини виникнення автокореляції в економетричних моделях

1.1. Поняття автокореляції

1.2. Наслідки автокореляції залишків

2. Перевірка наявності автокореляції

2.1. Критерій Дарбіна –Уотсона

2.2. Критерій фон Неймана

Автокореляціяце взаємозв'язок послідовних елементів часового чи просторового ряду даних.

В економетричних моделях особливе значення має автокореляція залишків.

Автокореляція залишків найчастіше спостерігається тоді, коли економетрична модель будується на основі часових рядів. Якщо іс­нує кореляція між послідовними значеннями деякої незалежної змінної, то спостерігатиметься і кореляція послідовних значень за­лишків.

Автокореляція може бути також наслідком помилкової специфі­кації економетричної моделі. Крім того, наявність автокореляції за­лишків може означати, що необхідно ввести до моделі нову незале­жну змінну.

У загальному випадку ми вводимо до моделі лише деякі з істот­них змінних, а вплив змінних, які виключені з моделі, має позначи­тися на зміні залишків. Існування кореляції між послідовними зна­ченнями виключеної з розгляду змінної не обов'язково має тягти за собою відповідну кореляцію залишків, бо вплив різних змінних мо­же взаємно погашатися. Якщо кореляція послідовних значень ви­ключених з моделі змінних спостерігається, то загроза виникнення автокореляції залишків стає реальністю.

Проілюструємо проблему автокореляції залишків на прикладі економетричної моделі з двома змінними. Нехай

, (1)

де ми припускаємо, що залишки u, задовольняють схему авторегресії першого порядку, тобто залежать тільки від залишків попере­днього періоду.

Специфікація моделі (1) має індекс t, що свідчить про її динамічний характер, тобто t — період часу, для якого будується така модель на основі динамічних (часових) рядів вихідних даних.

Якщо знехтувати автокореляцією залишків і оцінити параметри моделі 1МНК, то матимемо такі три наслідки.

1. Оцінки параметрів моделі можуть бути незміщеними, але не­ефективними, тобто вибіркові дисперсії вектора оцінок А можуть бути невиправдано великими.

2.Оскільки вибіркові дисперсії обчислюються не за уточненими формулами, то статистичні критерії t - і F-статистики, які знайдено для лінійної моделі, практично не можуть бути використані в дис­персійному аналізі.

3.Неефективність оцінок параметрів економетричної моделі при­зводить, як правило, до неефективних прогнозів, тобто прогнозів з дуже великою вибірковою дисперсією.

Для перевірки наявності автокореляції залишків найчастіше за­стосовується критерій Дарбіна — Уотсона (DW):

(2)

Він може приймати значення з проміжку [0, 4]: DW є [0, 4].

Якщо залишки ut є випадковими величинами, нормально роз­поділеними, а не автокорельованими, то значення DW містяться поблизу 2. При додатній автокореляції DW<2, при від'ємній — DW > 2. Фактичні значення критерію порівнюються з критичними (табличними) при різному числі спостережень п і числі незалеж­них змінних т для вибраного рівня значущості а. Табличні зна­чення мають нижню межу DW1 і верхню — DW2.

Коли DWфакт < DW1, то залишки мають автокореляцію. Якщо DWфакт > DW2, то приймається гіпотеза про відсутність автокоре­ляції. Коли DW1 <DW< DW2, то конкретних висновків зробити не можна: необхідно далі проводити дослідження, беручи більшу суку­пність спостережень. Зауважимо, що цей критерій призначений для малих вибіркових сукупностей.

Наведені співвідношення показують, що іс­нують області, в яких застосування критерію Дарбіна - Уотсона не може дати певних результатів, про що вже зазначалося. Верхні та нижні межі критерію DW визначають межі цієї області для різних розмірів вибірки, заданого числа пояснювальних змінних та певного рівня значущості.

Для виявлення автокореляції залишків використовується також критерій фон Неймана:

(3)

Звідси при . Фактичне значення критерію фон Неймана порівнюється з табличним для вибраного рівня зна­чущості і заданого числа спостережень. Якщо , то існує до­датна автокореляція.

Приклад. За допомогою двох взаємопов'язаних часових рядів про роздрібний товарообіг та доходи населення побудувати економетричну модель, що характеризує залежність роздрібного товаро­обігу від доходу. Вихідні дані наведено в табл. 1.

 

1. Вихідні дані

Рік                    
Роздрібний товарообіг (ум.од.) 24,0 25,0 25,7 27,0 28,8 30,8 33,8 38,1 43,4 45,5
Дохід (ум. од.) 27,1 28,2 29,3 31,3 34,0 36,0 38,7 43,2 50,0 52,1

Розв'язання

1. Ідентифікуємо змінні моделі:

— роздрібний товарообіг у період t, залежна змінна;

— дохід у період t, пояснювальна змінна;

звідси

де − стохастична складова, залишки.

2. Специфікуємо економетричну модель у лінійній формі:

де и — скаляр; у — вектор; х — матриця.

3. Визначимо оцінки параметрів моделі , за методом наймен­ших квадратів, припускаючи що залишки некорельовані:

де X' — матриця, транспонована до X.

Економетрична модель має вигляд:

.

4. Знайдемо розрахункові значення роздрібного товарообігу на основі моделі і визначимо залишки и, (табл. 2).

Знайдемо оцінку критерію Дарбіна — Уотсона:

.

Порівняємо значення критерію DW з табличним для α = 0,05 і п= 10. Критичні значення критерію DW у цьому разі такі:

D W1| = 0,879 — нижня межа; DW2 = 1,320 — верхня межа.

Оскільки критерій DWфакт < DW1, то можна стверджувати, що за­лишки uмають додатну автокореляцію.

Наявність чи відсутність автокореляції залишків можна також визначити згідно з критерієм фон Неймана.

2.Розрахункові значення для знаходження критерію Дарбіна - Уотсона

Рік
  24,0 23,612 0,388 0,150 - - -
  25,0 24,564 0,436 0,190 0,049 0,0024 0,1691
  25,7 25,515 0,485 0,034 -0,252 0,0632 0,0806
  27,0 27,245 -0,245 0,060 -0,430 0,1848 -0,045
  28,8 29,581 -0,779 0,609 -0,535 0,2866 0,1913
  30,8 31,310 -0,510 0,261 0,270 0,0729 0,3984
  33,8 33,646 0,154 0,023 0,665 0,4417 -0,0787
  38,1 37,971 0,129 0,017 -0,025 0,0006 0,0199
  43,4 43,420 -0,020 0,0002 -0,149 0,0222 -0,003
  45,5 45,236 0,264 0,070 0,284 0,0804 -0,0005
Σ 322,1     1,4152   1,1550 0,7276

Критерій фон Неймана . Це значення порівню­ється з табличним; Qтабл =1,18 при п = 10 і рівні значущості α = 0,05. Оскільки Qфакт < Qтабл, то існує додатна автокореляція залишків.

 

 

 

Зміст

  Вступ  
1. Методичні вказівки до вивчення дисципліни “ Економетрія”  
2. Мета і завдання дисципліни  
3. Зміст дисципліни  

 

 

Задание

Разновидность идеализма, провозглашающая независимость идеального начала, не только от материи, но и от сознания человека:

1. субъективный

2. диалектический

3. объективный

4. последовательный

5. непоследовательный







Дата добавления: 2015-09-15; просмотров: 3256. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия