Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Проверка значимости уравнения бинарной регрессионной модели на основе теста отношения правдоподобия (LR-тест)





Проверку значимости уравнения регрессии производят на ос­нове вычисления F- критерия Фишера:

(9.23)

где m- число параметров в уравнении регрессии.

Полученное значение — критерия Fpacч сравнивают с критиче­ским (табличным) для принятого уровня значимости 0,05 или 0,01 и чисел степеней свободы ν1 = m — 1 и ν2 = n- m. Если оно окажется больше соответствующего табличного значения, то дан­ное уравнение регрессии статистически значимо, т. е. доля ва­риации, обусловленная регрессией, намного превышает случай­ную ошибку.

Принято считать, что уравнение регрессии пригодно для практического использования в том случае, если Fpacч > Fтабл не менее чем в 4 раза.

Для оценки значимости коэффициентов регрессии при линей­ной зависимости у от x1 и x2 - (двух факторов) используют t-критерий Стьюдента при n-m-1 степенях свободы:

(9.24, a
)

(9.24, б)


Существенность совокупного коэффициента корреляции опре­деляют по формуле:

(9.25)

Значения оцениваемых a1, a2 ,
берутся по модулю.

Если в уравнении все коэффициенты регрессии значимы, то данное уравнение признают окончательным и применяют в каче­стве модели изучаемого показателя для последующего анализа.

Оценку значимости коэффициентов регрессии с помощью t
- критерия используют для завершения отбора существенных факторов в процессе многошагового регрессионного анализа. Он заключается в том, что после оценки значимости всех коэф­фициентов регрессии из модели исключают тот фактор, коэф­фициент при котором незначим и имеет наименьшее значение критерия. Затем уравнение регрессии строится без исключен­ного фактора, и снова проводится оценка адекватности уравне­ния и значимости коэффициентов регрессии. Такой процесс длится до тех пор, пока все коэффициенты регрессии не ока­жутся значимыми, что свидетельствует о наличии в регрессион­ной модели только существенных факторов. В некоторых случа­ях расчетное значение tрасч находится вблизи tтабл, поэтому с точки зрения содержательности модели такой фактор можно ос­тавить для последующей проверки его значимости в сочетании с другим набором факторов.

Последовательный отсев несущественных факторов рас­смотренным выше приемом (или последовательным включе­нием новых факторов) составляет основу многошаговогорег­рессионногоанализа.

Проверим адекватность построенной двухфакторной модели про­изводительности труда по F-критерию Фишера:

Табличное значение F-критерия при доверительной вероятности 0.95, т. е. (1-0,05) при н1 = т - 1 = 2 - 1 = 1; н2= n
- т =
20 -2 = 18 со­ставляет 4,41.

Поскольку Fpacч > Fтабл уравнение регрессии = 81,03-0,41 x1+3,37 x2 следует признать адекватным.

Значимость a1 , a2 и оценим t-критерием Стьюдента:

 

где- значения логарифмической функции правдоподобия оцененной модели и ограниченной модели, в которой является константой (не зависит от факторов x, исключая константу из множества факторов).

 

Данная статистика, как и в общем случае использования метода максимального правдоподобия, позволяет тестировать статистическую значимость модели в целом. Если её значение достаточно большое (больше критического значения распределения где К -количество факторов (без константы) модели), то модель можно признать статистически значимой







Дата добавления: 2015-08-31; просмотров: 1402. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия