Определение регрессионных моделей с дискретной зависимой переменной.
Результативная переменная у в нормальной линейной модели регрессии является непрерывной величиной, способной принимать любые значения из заданного множества. Но помимо нормальных линейных моделей регрессии существуют модели регрессии, в которых переменная у должна принимать определённый узкий круг заранее заданных значений. Моделью бинарного выбора называется модель регрессии, в которой результативная переменная может принимать только узкий круг заранее заданных значений В качестве примеров бинарных результативных переменных можно привести: Приведенные в качестве примеров бинарные переменные являются дискретными величинами. Бинарная непрерывная величина задаётся следующим образом:
Если стоит задача построения модели регрессии, включающей результативную бинарную переменную, то прогнозные значения yiпрогноз, полученные с помощью данной модели, будут выходить за пределы интервала [ 0;+1 ] и не будут поддаваться интерпретации. В этом случае задача построения модели регрессии формулируется не как предсказание конкретных значений бинарной переменной, а как предсказание непрерывной переменной, значения которой заключаются в интервале [ 0;+1 ]. Решением данной задачи будет являться кривая, удовлетворяющая следующим трём свойствам: 1)1) F(–∞)=0; 2) F(+∞)=1; 3) F(x1)>F(x2) при условии, что x1> x2. Данным трём свойствам удовлетворяет функция распределения вероятности. Модель парной регрессии с результативной бинарной переменной с помощью функции распределения вероятности можно представить в следующем виде: prob(yi=1)=F(β0+β1xi), где prob(yi=1) – это вероятность того, что результативная переменная yi примет значение, равное единице. В этом случае прогнозные значения yiпрогноз, полученные с помощью данной модели, будут лежать в пределах интервала [ 0;+1 ]. Модель бинарного выбора может быть представлена с помощью скрытой или латентной переменной следующим образом: Векторная форма модели бинарного выбора с латентной переменной: В данном случае результативная бинарная переменная yi принимает значения в зависимости от латентной переменной yi*:
|