Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ





 

1.1. Постановка задачи

 

Линейное программирование (ЛП) – область математики, разрабатывающая теорию и численные методы решения задач нахождения экстремума (максимума или минимума) линейной функции многих переменных при наличии линейных ограничений, т. е. линейных равенств или неравенств, связывающих эти переменные. К задачам линейного программирования сводится широкий круг вопросов планирования экономических процессов, где ставится задача поиска наилучшего (оптимального) решения.

Общая задача линейного программирования (ЗЛП) состоит в нахождении экстремального значения (максимума или минимума) линейной функции.

Примером решения задачи является разработка оптимального плана деповского ремонта грузовых вагонов. В настоящее время этот вид ремонта выполняется в ремонтных вагонных депо, входящих в департамент ОАО «РЖД» по ремонту грузового вагонного парка. Программа ремонта по количеству и типам вагонов для каждого депо в отдельности устанавливается департаментом исходя из потребностей в ремонте, производственных мощностей депо и имеющихся в наличии производственных ресурсов. С учетом того, что в настоящее время неуклонно возрастает вагонный парк других собственников, а также предстоящим акционированием департамента возникает проблема определения оптимальной производственной программы депо, обеспечивающей максимальную прибыль предприятию.

Такая задача может быть сформулирована следующим образом. Имеем:

хj – объем ремонта вагонов j-го типа; j = 1, 2, … n;

bi – объем, имеющихся в наличии производственных ресурсов i-го вида; i = 1, 2, … m;

aij – расход i-го вида ресурсов на ремонт одного вагона j-го типа;

Cj – прибыль, получаемая предприятием за один отремонтированный вагон j-го типа.

Решение задачи осуществляется на основе следующей экономико-ма­тематической модели.

Найти совокупность переменных хj, максимизирующих целевую функцию F:

 

, (1.1)

 

при наложенных ограничениях (система m линейных уравнений и неравенств с n переменными):

 

, (1.2)

 

xj, j = 1….n, (1.3)

 

где aij, bi, сj – заданные постоянные величины

Линейную функцию (1.1), для которой ищется экстремальное значение, принято называть целевой функцией. Условия (1.2) называются функциональными, а (1.3) – прямыми ограничениями задачи.

Виды задач ЛП:

1) задача оптимального распределения ресурсов при планировании выпуска продукции на предприятии (задача об ассортименте);

2) задача на максимум выпуска продукции при заданном ассортименте;

3) задача о смесях (рационе, диете);

4) транспортная задача;

5) задача о рациональном использовании имеющихся мощностей;

6) задача о назначениях.

Для решения ЗЛП необходимо построить экономико-математическую модель исследуемого экономического процесса.

1.2. Решение задач линейного программирования

с помощью надстройки MS Excel «Поиск решения»

Рассматриваемая модель относится к классу экономико-мате­ма­ти­че­ских моделей линейного программирования. Решение задач, описываемых экономико-математическими моделями линейного программирования, как правило, осуществляется универсальным симплексным методом.

Он достаточно трудоемок. Поэтому выполнение расчетов рекомендуется в среде MS Excel.

Технологию решения задач линейного программирования в среде MS Excel продемонстрируем на следующем примере.

Вагоноремонтное депо имеет в своем распоряжении определенное количество ресурсов: рабочую силу, материалы, запасные части, оборудование, производственные площади и т. п. Допустим, например, имеются ресурсы четырех видов: рабочая сила, материалы, специальные запасные части и фонд времени вагоноремонтных позиций. Депо может ремонтировать вагоны четырех типов. Информация о количестве единиц каждого ресурса, необходимого для ремонта одного вагона каждого типа, их объеме и получаемой прибыли приведена в табл. 1.1.

 

Таблица 1.1







Дата добавления: 2015-08-31; просмотров: 1187. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия