Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Повторение операций 2, 3





 

От матрицы к матрице грузооборот (затраты на транспортировку) должны снижаться. Если план не оптимален, то необходимо произвести повторный расчёт потенциалов, проверить небазисные клетки на соответствие условию оптимальности.

Покажем дальнейшее решение задачи, основываясь на данных табл. 2.6. Результат действий второй и третьей итераций приведен в табл. 2.8.

Проверка плана на оптимальность свидетельствует о том, что для двух клеток условия оптимальности не выполняются. После перераспределения поставок по клетке А4В3, получаем новый план (табл. 2.9).

Таблица 2.9

Оптимальный план поставок

Проверка плана перевозок на оптимальность по условию (2.8) показала, что для всех небазисных клеток матрицы условия оптимальности выполняются. Функционал F'' оптимального плана равен 1920 ткм. Таким образом, получен план перевозок, обеспечивающий минимальный объем перевозочной работы для транспортировки всего груза между станциями погрузки и выгрузки.

 

2.3. Решение транспортной задачи линейного программирования

с помощью надстройки «Поиск решения» в MS Excel

 

Рассмотрим последовательность решения предыдущего примера надстройки «Поиск решения» в MS Excel.

Вначале вводятся исходные данные (рис. 2.1).

 

 

Рис. 2.1. Исходные данные

 

Расчет ограничений транспортной задачи необходимо выполнять в нижеприведенной последовательности: в ячейки столбика С15:С18 вводим зависимость с помощью функции СУММ Мастера функций. Для этого в соответствующем диалоговом окне вводим адрес строки. На рис. 2.2 представлен адрес для ячейки С15. Аналогичные расчеты следует выполнить для всех пунктов производства и потребления.

 

 

Рис. 2.2. Ввод ограничительных уравнений

 

Затем в ячейку D12 вводим целевую функцию (рис. 2.3), представляющую собой сумму произведений себестоимости перевозки тонны груза на один километр и соответственно объем перевозок, условно принятый за единицу по всем пунктам производства и потребления.

 

Рис. 2.3. Ввод целевой функции

 

На следующем этапе запускаем «Поиск решения» и заполняем соответствующие ячейки (рис. 2.4.). В поле с единицами располагаются изменяемые ячейки.

Следует помнить, что при вводе ограничений должны соблюдаться равенства содержимого ячеек рассчитанных сумм указанным в условии значениям (балансовые ограничения транспортной задачи). Введенные зависимости должны быть равны объему производства и потребления соответственно.

 

Рис. 2.4. Этап «Поиск решения»

 

Во вкладке «Параметры» отметить «Линейная модель» и «Неотрицательная значения». Затем нажать «Выполнить» и сохранить полученное значение (рис. 2.5.).

 

Рис. 2.5. Результаты этапа «Поиск решения»

 

Как видно из рис. 2.5, функционал (F = 1920 ткм), найденный с помощью метода потенциалов, совпадает со значением целевой функции определённой с помощью надстройки «Поиск решения» в MS Excel.

 

2.4. Оптимизация загрузки производственных мощностей

предприятий по производству запасных частей

для железнодорожного транспорта

 

Железнодорожный транспорт в больших объемах потребляет разнообразные запасные части для поддержания активной части своих производственных фондов в работоспособном состоянии. Запасные части для предприятий железнодорожного транспорта изготавливаются на заводах по ремонту подвижного состава и производству запасных частей и других специализированных предприятиях. Снижение издержек, связанных с обеспечением предприятий железнодорожного транспорта запасными частями весьма актуально. Учитывая большую протяженность железных дорог России, эта задача должна решаться комплексно как для производственной, так и для транспортной составляющей затрат. Для решения этой задачи с успехом может быть использована экономико-мате­ма­­ти­ческая модель так называемой транспортной задачи линейного программирования. В частности, ее разновидность – открытая модель транспортной задачи. Для построения экономико-математической модели рассматриваемой задачи введем следующие обозначения:

аi – производственные мощности предприятий по производству запасных частей по пунктам размещения i;

bj – потребности в запасных частях в пунктах j;

xij – объемы перевозок запасных частей между пунктами производства и пунктами потребления i, j;

Зi – затраты на производство единицы (удельные затраты) запасных частей у предприятий по пунктам i;

сij – затраты на транспортировку единицы запасных частей между пунктами производства и потребления;

аi' – загрузка производственных мощностей предприятий по производству запасных частей по пунктам размещения i.

Тогда экономико-математическая модель может быть сформулирована следующим образом: найти совокупность переменных аi', минимизирующих целевую функцию F:

 

. (2.9)

 

В данной задаче предполагается, что суммарная мощность всех предприятий должна превышать общие потребности. Это весьма важно, поскольку при равенстве задача оптимизации теряет смысл, так как будет возможен только один вариант решения при стопроцентной загрузке мощностей. Следовательно, имеет место открытая транспортная задача. Нереализованная продукция относится на счёт фиктивного потребителя.

Допустим, имеется три предприятия по производству запасных частей и пять пунктов потребления. Объемы производства будем измерять в тоннах, а затраты в тысячах рублей. Рассмотрим процесс оптимизации на примере. Известны показатели, характеризующие производственные мощности. Они имеют следующие значения:

а1 = 500 т; а2 = 400 т; а3 = 700 т;

З1= 45 тыс. руб.;З2 = 49 тыс. руб.; З3 = 40 тыс. руб.

Потребности в пунктах потребления:

b1 = 350 т; b2 = 320 т; b3 = 190 т; b4 = 270 т; b5 = 230 т.

Затраты на транспортировку одной тонны запасных частей между пунктами производства и потребления представлены в матрице (табл. 2.10).

Таблица 2.10







Дата добавления: 2015-08-31; просмотров: 668. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия