Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Формула интегрирования по частям





Пусть u = u (x) и v = v (x) — дифференцируемые на некотором промежутке X функции. Тогда

.

Интегрируя это выражение, получим:

,

,

откуда следует формула интегрирования по частям:

= uv. (1)

 

С помощью формулы (1) нахождение интеграла сводится к вычислению другого интеграла . Поэтому применение формулы (1) целесообразно только тогда, когда последний интеграл может быть вычислен проще исходного. При этом за u = u (x) берётся такая функция, которая при дифференцировании упрощается, а за dv – та часть подынтегрального выражения, интеграл от которой можно найти.

Для интегралов вида , , , где - многочлен, за u следует принять , а за dv – соответственно выражения , , .

Для интегралов вида , , , где - многочлен, за u следует принять соответственно функции , , , а за dv .

 

Пример. Найти неопределенный интеграл

.

Решение. Пусть u = x; dv = cos 3 x dx, тогда du = dx; v = sin 3 x. Отсюда по формуле интегрирования по частям получим:

Пример. Найти неопределенный интеграл

ò (x2 – 3 x + 2) e5xdx.

Решение. Пусть x2 – 3 x + 2 = u; e5xdx = dv. Тогда du = (2 x – 3) dx; . По формуле интегрирования по частям получим:

ò (x2 – 3 x + 2) e5xdx = .

К последнему интегралу ещё раз применим метод интегрирования по частям, полагая 2 x - 3 = u; e5xdx = dv. Отсюда следует: du = 2 dx; , и окончательно получим:

ò (x2 – 3 x + 2) e5x dx =

.

 

Пример. Найти неопределенный интеграл .

Решение. Пусть ,

тогда =

.

 







Дата добавления: 2015-09-18; просмотров: 369. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия