Б) волновая теория удара
Классическая теория удара, основывающаяся главным образом на законах сохранения импульса и энергии, позволяет однозначно определить конечные скорости тел. Так как предполагается, что все элементы каждого тела жестко связаны и будут мгновенно испытывать одинаковые изменения движения, являющиеся результатом удара. В действительности возмущение, порожденное в точке соударения, распространяется в телах с конечной скоростью, и его отражение от граничных поверхностей вызывает колебания и вибрации в телах. Таким образом, все сечения каждого тела при соударении одновременно не подвергаются одинаковому действию сил. Местные быстро изменяющиеся деформации и механические напряжения, вызванные этим возмущением, не могут быть определены методами классической теории, но могут быть исследованы с помощью рассмотрения волнового явления. Выводы классической теории удара приводят к серьезным ошибкам, когда значительная часть общей энергии обуславливает вибрацию. Этот эффект зависит от соотношения продолжительности удара и периода колебаний, возникающих в телах. В основе волновой теории удара лежит классическая теория упругости. Уравнения распространения упругих волн получаются в результате совместного рассмотрения трехмерных соотношений между механическими напряжениями и деформациями, условий совместности и уравнений движения. Соотношения между механическим напряжением и деформацией для однородной изотропной среды записываются следующим образом: , (1.19) где и - проекции нормальных и касательных напряжений; - относительная деформация растяжения (сжатия); - деформация сдвига; - постоянная Ляме; E и G - модули упругости и сдвига соответственно; Рис. 2. Проекции напряжений, действующих на элементарный объем Уравнения движения могут быть получены из условия равновесия проекций напряжений, действующих на элементарный объем, который показан на рис. 2 При отсутствии объемных сил в элементе со сторонами dx, dy, dz Условие равновесия сил приводит к выражениям: , (1.20) где - плотность тела; - проекции перемещения (деформации). Подстановка (1.19) в (1.20) приводит к уравнению движения в перемещениях: , (1.21) где - оператор Лапласа. Решение этих уравнений при заданных начальных и граничных условиях определяет в любой точке тела весь процесс деформирования. С помощью соответствующих преобразований уравнения (1.21) могут быть приведены к виду: или (1.22) где - скорость распространения деформации. Уравнение (1.22) называется волновым уравнением, указывающим, что D (объемное расширение) распространяется со скоростью волн расширения. При ударе тел возникает весьма сложное поле напряжений, изменяющихся не только от точки к точке (как при статической нагрузке), но и в данной точке тела со временем. Поле напряжений еще больше усложняется в результате отражения волн от границ тела. В силу сказанного математическое описание процесса удара в общем виде оказывается настолько сложным, что выходит за рамки возможностей теории упругости. Решение уравнений (1.21) или (1.22) может быть получено лишь для ограниченного числа специальных случаев. В остальных случаях для решения частных прикладных вопросов теории удара приходится применять упрощения и допущения, которые не вели бы одновременно к ошибкам качественного и количественного характера. Для примера рассмотрим удар двух тонких и длинных стержней с плоскими торцами (рис. 3). Рис. 3. Удар двух стержней Для таких стержней все точки, расположенные на поверхности контакта обоих тел, находятся в одинаковых условиях, и, следовательно, скорости и напряжения в них будут одинаковыми. Это постоянство скоростей и напряжений сохранится для каждого сечения, которого достигнет распространяющаяся волна, расположенного перпендикулярно ее распространению. Пусть ось ОХ направлена вдоль осей стержня. Так как жесткость воздуха ничтожно мала по сравнению с жесткостью стержней и силы трения воздуха о стержень малы, то напряжения на боковые поверхности нормальные к ней , и касательные к ней , . Взаимные касательные напряжения и также равны нулю. Поскольку диаметр стержней принят малым и стержни однородные, можно полагать, что напряжения в центре сечения мало отличаются от соответствующих напряжений в других точках этого сечения. С учетом перечисленных условий, можно приближенно считать, что для любой точки соударяющихся стержней справедливы условия , . Таким образом, из рассмотрения исключаются все напряжения, кроме направленного вдоль оси стержней, нормального напряжения . Напряжения, направленные вдоль оси стержня вызывают кроме продольных и поперечные деформации и . Эти деформации можно определить по известным в теории упругости уравнениям: , (1.23) Решая уравнения (1.23) получим: ; , где r - радиусы стержней по осям y и z. Так как s x не зависит от координат y и z, то . (1.24) Если по стержням бежит волна сжатия, то и из равенства (1.24) вытекает, что диаметр стержней увеличивается на величину . В случае волны растяжения, диаметр стержней уменьшается на величину . Общая система уравнений (1.20) с учетом сделанных допущений значительно упрощается. Второе и третье уравнения тождественно обращаются в нуль, а первое примет вид: Поскольку , то это уравнение можно переписать в виде: или (1.25) Сравнивая (1.25) с (1.22) видим, что волновое уравнение имеет простой вид и легко может быть решено при задании начальных и граничных условий. Коэффициент определяет скорость продольной волны механических напряжений в данном материале. Простой анализ уравнения (1.25) показывает, что механические напряжения и деформации от поверхности контакта стержней распространяются вдоль стержня со скоростью звука .
|