ДЕЙСТВИЕ УЛЬТРАФИОЛЕТОВОГО ИЗЛУЧЕНИЯ НА БЕЛКИ И НУКЛЕИНОВЫЕ КИСЛОТЫ.
Действие ультрафиолетового излучения на белки и нуклеиновые кислоты имеет важное общебиологическое значение. С момента возникновения жизни на Земле доклеточные образования и одноклеточные организмы находились под сильным влиянием ультрафиолетового излучения. Под постоянным воздействием ультрафиолетовых лучей находятся живые организмы и в настоящее время. Ультрафиолетовое излучение, приводящее к гибели клеток, появлению мутаций или инактивации клеток, имеет важное практическое значение в медицине, генетике микроорганизмов и т.д. Ультрафиолетовое излучение имеет стимулирующее действие на биологические и ферментативные процессы синтеза веществ. Спектр ультрафиолетового излучения Солнца разделяют на три области: 1) 180-275 нм – коротковолновое излучение. Изменяет структуру белков и липоидов, оказывает бактерицидное действие; 2) 275—320 нм — средневолновое излучение. Оказывает антирахитическое и пигментообразующее действие, усиливает образование эпителия, стимулирует процессы регенерации в организмах; 3) 320—400 нм — длинноволновое излучение. Оказывает слабое биологическое действие, вызывает люминесценцию некоторых органических веществ. Ультрафиолетовое излучение может вызвать такие фотобиологические реакции, которые приводят к деструкции белков и нуклеиновых кислот. Эти фотобиологические реакции вызывают и вторичные изменения, уже не связанные с непосредственным действием излучения. Первичные изменения состоят в нарушении структуры ДНК и в денатурации белков. Вторичные изменения наступают вследствие того, что клеточные ферменты расщепляют денатурированный белок. При этом накапливаются продукты распада. Продукты распада вызывают раздражение нервных окончаний, которое приводит к сложным рефлекторным реакциям. Поглощение света белками в области 260-280 нм обусловлено ароматическими аминокислотами: тирозином и триптофаном. Эти аминокислоты поглощают ультрафиолетовое излучение и разрушаются. Разрушение данных аминокислот приводит к денатурации белков и к инактивации их ферментативной активности. Процесс протекает в несколько стадий. 1. Активная стадия – поглощение света и возбуждение молекулы аминокислоты АН: Этот процесс обратим, т. е. возбужденная молекула может люминесцировать и снова переходить в невозбужденное состояние:
где, согласно закону Стокса, 2. Стадия фотоионизации — возбужденная молекула является неустойчивой и распадается на электрон и ион-радикал:
Электрон захватывается другими молекулами, в основном воды, и сольватируется. Ион-радикал является неустойчивым соединением и распадается на свободный радикал и ядро атома водорода (протон): Все эти процессы протекают очень быстро и исследуются с помощью метода импульсной спектрофотомерии при низких температурах. 3. Стадия реакция образовавшихся радикалов и сольватированного электрона. Данная стадия может иметь несколько направлений: а) Образовавшийся радикал аминокислоты взаимодействует с соседними звеньями пептидной цепи белковой молекулы. Это вызывает изменение конфигурации и белковой молекулы. б) Свободный радикал аминокислоты может взаимодействовать с кислородом и образовывать перекисный радикал аминокислоты: в) Сольватированный электрон является исключительно сильным восстановителем. Ион водорода – протон – также в химическом отношении очень активен. Они взаимодействуют с аминокислотными остатками белковой молекулы. При этом образуются аммиак и радикалы аминокислот: В результате этого процесса происходит разрушение звеньев белковой молекулы. 4. Стадия образования устойчивых продуктов окисления. Все образовавшиеся радикалы аминокислот взаимодействуют с различными веществами. Через цикл реакций образуются устойчивые продукты окисления, которые обладают токсическими свойствами. Они взаимодействуют с молекулами белка и также нарушают их структуру. В ультрафиолетовой области спектра (260 им) сильно поглощают лучи и подвергаются фотохимическим превращениям только азотистые основания нуклеиновых кислот. Основное действие ультрафиолетовых лучей на нуклеиновую кислоту заключается в том, что последняя теряет биологическую активность т.е. способность передавать заключенную в ней информацию. При этом основную роль в инактивации ДНК играют процессы димеризации тиминовых оснований. Процессы демиризации тиминовых оснований протекают раньше других фотохимических реакций. Когда еще не наблюдается заметного накопления гидрированных и окисленных оснований, инактивация ДНК уже происходит. Две молекулы Тимина в двойной спирали ДНК никогда не расположены рядом. Более того, в силу комплементарности нитей в ДНК они никогда не расположены точно напротив друг друга. Под воздействием ультрафиолетовых лучей возникает местное расплетение нитей ДНК. Затем нити изгибаются таким образом, что тиминовые основания сближаются. Между ними возникает стойкая химическая связь, которая как бы стягивает двойную нить ДНК и препятствует считыванию с нее информации. Ультрафиолетовое излучение оказывает сильное бактериостатическое и бактерицидное действие. При облучении ультрафиолетовыми лучами бактерий и вирусов происходит угнетение их активности, подавление способности к размножению и гибель. Механизм действия ультрафиолетового излучения на бактерии и вирусы был выявлен при изучении спектров действия инактивации этих организмов. Под спектром действия понимают зависимость величины фотобиологического эффекта от длины волны излучения. Оказалось, что спектр действия инактивации при ультрафиолетовом облучении вирусов и бактерий совпадает со спектром поглощения нуклеиновых кислот.Следовательно, основой бактерицидного действия ультрафиолетовых лучей является повреждение и инактивация нуклеиновых кислот. Для бактерий, кроме того, определенное значение имеет и повреждение ферментных систем. Другая картина была получена при исследовании влияния ультрафиолетовых лучей на клетки млекопитающих. Для них излучения с длиной волны 260 и 280 им обладают почти одинаковой эффективностью. Это указывает на то, что в клетках млекопитающих фотохимическое повреждение белков так же существенно, как и повреждение ДНК. Бактерицидное действие ультрафиолетового излучения широко используется в лечебных и профилактических целях для облучения участков тела, содержащих инфекцию, для стерилизации различных предметов, веществ, продуктов питания и т.д. Вредное влияние на организм человека оказывает лишь большие дозы облучения коротковолновыми лучами. Умеренные дозы ультрафиолетового облучения повышают общую и иммунную реактивность организма, что позволяет применять ультрафиолетовые лучи с лечебными и профилактическими целями. Особое значение ультрафиолетовое облучение имеет в процессе образования витамина D.. Облучение кожи приводит к проявлению антирахитических свойств этого витамина. Длительное пребывание в условиях, исключающих ультрафиолетовое облучение, приводит к подавлению синтеза витамина D и к развитию нарушений фосфорно-кальциевого обмена.
|