Истолкование уравнения Д. Бернулли, его практическое применение
Рассмотрим смысл уравнения Бернулли с точек зрения геометрической и энергетической. С геометрической точки зрения уравнение Д. Бернулли можно прочитать так: напорная линия по длине потока всегда понижается, так как часть напора тратится на преодоление трения по длине потока. Уравнение Бернулли с энергетической точки зрения можно представить как сумму удельной кинетической и удельной потенциальной энергий в любом сечении потока при установившемся движении жидкости, а четвертый член уравнения hw как потерю механической энергии на преодоление сил трения при перемещении единицы массы жидкости от сечения 1-1 ксечению 2-2. В связи с этим линию NN можно назвать линией полной удельной энергии потока, а линию рр – линией удельной потенциальной энергии. Гидравлический уклон с энергетической точки зрения необходимо рассматривать как уменьшение полной удельной энергии на единицу длины потока. Энергетический смысл уравнения Бернулли для элементарной струйки идеальной жидкости заключается в постоянстве вдоль струйки полной удельной энергии жидкости. Следовательно, уравнение Бернулли выражает закон сохранения механической энергии в идеальной жидкости. В процессе движения идеальной жидкости одна форма энергии может превращаться в другую, однако полная удельная энергия при этом, как следует из уравнения Бернулли, остаётся без изменений.
[1] Закон назван в честь французского учёного Блеза Паскаля - Блез Паскаль (фр. Blaise Pascal, 19 июня 1623, Клермон-Ферран — 19 августа 1662, Париж, Франция) — французский математик, физик, литератор и философ. Классик французской литературы, один из основателей математического анализа, теории вероятностей и проективной геометрии, создатель первых образцов счётной техники, автор основного закона гидростатики.
|