Свойства пределов функции
Пусть все функции, рассматриваемые ниже, определены на (а, в), кроме, быть может, фиксированной точки хо Î (а, в), тогда верны следующие свойства: 1. Если j (х) £ ¦ (х) £ y (х) и А = = Þ = A. 2. Если ¦(х) = С (сonst) Þ ¦(x) = C. 3. Если cущ. Þ"с - const
4. Если существуют конечные пределы и , тогда: а) ; б) ; в) = . Все эти свойства доказываются одинаковым методом, основанным на соответствующих свойствах пределов последовательностей. Для доказательства этих свойств введем понятие бесконечно малых и бесконечно больших функций.
|