Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Замечание. Величина, обратная бесконечно малой, является бесконечно большой.





Величина, обратная бесконечно малой, является бесконечно большой.

Пусть a = a (х), a (х) ¹ 0 при х ¹ хо есть в бесконечно малой (или бесконечно большой) тогда бесконечно большая (бесконечно малая).

В дальнейшем будем использовать символические записи для любого числа а>0: , , , , , .

Рассмотрим свойства бесконечно малых функций.

1) Алгебраическая сумма конечного числа бесконечно малых, определенная на общем множестве, есть величина бесконечно малая при х ® хо.

2) Произведение ограниченной при х ® хо функции на бесконечно малых есть функция бесконечно малая.

2") Произведение конечного числа бесконечно малого при х ® хо есть функция бесконечно малая.

3) [a(х) ]n - (n - целая положительная степень) a (х) - бесконечно малая тогда и [a (х) ]n - бесконечно малая.

4) Что касается отношения двух бесконечно малых

,

- может быть функция произвольного поведения.

Но с помощью действия деления можно сравнить между собой бесконечно малые.

Определение 4.6. a (х), b (х) бесконечно малые при х ® хо имеют одинаковый порядок, если их отношение имеет конечный предел, отличный от нуля, т.е. =K¹ 0.

Определение 4.7. Порядок бесконечно малой b (х) выше порядка бесконечно малой a(х), если отношение есть бесконечно малое при х ® хо, т.е. = 0.

В этом случае пишут b(х) = 0 [a (х)] при х ® хо.

Определение 4.8. Бесконечно малая b (х) имеет предел n относительно бесконечно малой a (х) при х ® хо, если

= K ¹ 0.

Докажем одно из свойств сформулированных в1.5.3., например, свойство

4. Если существуют конечные пределы и , тогда:

Доказательство:Пусть ,

Тогда имеем на основании 3.2. ¦(х) = A + a (х), g(х) = B + b(х), где a(х), b(х) - бесконечно малые при х ® хо

Тогда ¦(х) × g(х) = A × B + g(х), где g(х) = A × b (х) + b × a) + a (х) × b(х) -

есть бесконечно малая Þ g(х) ® 0 бесконечно малая на основании свойств бесконечно малой функции.

Отсюда

.

Рассмотрим в качестве примера предел отношения синуса бесконечно малой дуги к самой дуге.

Теорема 4.3. Первый замечательный предел. Предел отношения синуса бесконечно малой дуги к самой дуге, выраженной в радианах, равен единице, .

Доказательство: Пусть х > 0 и х ® 0, так что 0 < х < .

Рис.4.4.

В тригонометрическом круге R = 1 рассмотрим S DОАВ, S cек. ОАВ, SDОАВ

SDОАВ = SDОАВ =

Получаем

т.е. Sin x < x < tg x разделим на Sin x > 0, получим

1 < или cos x < .

Пусть теперь х ® 0 + 0, но

т.к. 1 - cos x = 2 sin2 бесконечно малая по условию,

то . Тогда функция заключена между двумя функциями, имеющими предел, равный 1.

На основании свойства 1, получаем .

Если х < 0; имеем , где - х > 0.

Поэтому .

З а м е ч а н и е. " х çsin x ç £ çx ç, причем равенство имеет место при

х = 0.

Теорема 4.3. Второй замечательный предел. (Число е ).

Ранее было доказано, что последовательность имеет предел, заключенный между 2 и 3.

Можно доказать, что функция у = , х Î (-¥, -1) È (0, +¥) при х ® ¥ стремится к е:

е = .

Пусть , тогда e = или ,

где е = 2,7182818284...

 







Дата добавления: 2015-08-12; просмотров: 884. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия