Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Замечание. Величина, обратная бесконечно малой, является бесконечно большой.





Величина, обратная бесконечно малой, является бесконечно большой.

Пусть a = a (х), a (х) ¹ 0 при х ¹ хо есть в бесконечно малой (или бесконечно большой) тогда бесконечно большая (бесконечно малая).

В дальнейшем будем использовать символические записи для любого числа а>0: , , , , , .

Рассмотрим свойства бесконечно малых функций.

1) Алгебраическая сумма конечного числа бесконечно малых, определенная на общем множестве, есть величина бесконечно малая при х ® хо.

2) Произведение ограниченной при х ® хо функции на бесконечно малых есть функция бесконечно малая.

2") Произведение конечного числа бесконечно малого при х ® хо есть функция бесконечно малая.

3) [a(х) ]n - (n - целая положительная степень) a (х) - бесконечно малая тогда и [a (х) ]n - бесконечно малая.

4) Что касается отношения двух бесконечно малых

,

- может быть функция произвольного поведения.

Но с помощью действия деления можно сравнить между собой бесконечно малые.

Определение 4.6. a (х), b (х) бесконечно малые при х ® хо имеют одинаковый порядок, если их отношение имеет конечный предел, отличный от нуля, т.е. =K¹ 0.

Определение 4.7. Порядок бесконечно малой b (х) выше порядка бесконечно малой a(х), если отношение есть бесконечно малое при х ® хо, т.е. = 0.

В этом случае пишут b(х) = 0 [a (х)] при х ® хо.

Определение 4.8. Бесконечно малая b (х) имеет предел n относительно бесконечно малой a (х) при х ® хо, если

= K ¹ 0.

Докажем одно из свойств сформулированных в1.5.3., например, свойство

4. Если существуют конечные пределы и , тогда:

Доказательство:Пусть ,

Тогда имеем на основании 3.2. ¦(х) = A + a (х), g(х) = B + b(х), где a(х), b(х) - бесконечно малые при х ® хо

Тогда ¦(х) × g(х) = A × B + g(х), где g(х) = A × b (х) + b × a) + a (х) × b(х) -

есть бесконечно малая Þ g(х) ® 0 бесконечно малая на основании свойств бесконечно малой функции.

Отсюда

.

Рассмотрим в качестве примера предел отношения синуса бесконечно малой дуги к самой дуге.

Теорема 4.3. Первый замечательный предел. Предел отношения синуса бесконечно малой дуги к самой дуге, выраженной в радианах, равен единице, .

Доказательство: Пусть х > 0 и х ® 0, так что 0 < х < .

Рис.4.4.

В тригонометрическом круге R = 1 рассмотрим S DОАВ, S cек. ОАВ, SDОАВ

SDОАВ = SDОАВ =

Получаем

т.е. Sin x < x < tg x разделим на Sin x > 0, получим

1 < или cos x < .

Пусть теперь х ® 0 + 0, но

т.к. 1 - cos x = 2 sin2 бесконечно малая по условию,

то . Тогда функция заключена между двумя функциями, имеющими предел, равный 1.

На основании свойства 1, получаем .

Если х < 0; имеем , где - х > 0.

Поэтому .

З а м е ч а н и е. " х çsin x ç £ çx ç, причем равенство имеет место при

х = 0.

Теорема 4.3. Второй замечательный предел. (Число е ).

Ранее было доказано, что последовательность имеет предел, заключенный между 2 и 3.

Можно доказать, что функция у = , х Î (-¥, -1) È (0, +¥) при х ® ¥ стремится к е:

е = .

Пусть , тогда e = или ,

где е = 2,7182818284...

 







Дата добавления: 2015-08-12; просмотров: 884. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия