Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Бесконечно малые и бесконечно большие функции





Определение 4.4. Функция a = a(х) называется бесконечно малой функцией (или просто бесконечно малой) при х ® хo, если

Лемма 4.2. Предел существует и равен А Û ¦ (х) = A + a (х),

где a (х) - бесконечно малая.

Доказательство: Пусть , то, полагая

¦(х) - A = a (х), получим .

обратно, если ¦(х) = A + a(х) и .

Из леммы 3.2. следует, что если , то в некоторой окрестности Охо знак f(х) (х Î C) совпадает со знаком числа А.

Определение 4.5. Функция f = f(x) называется бесконечно большой при х ® хо, если "e > 0 $ d = d (e) > 0: ç¦(x)ç > e, "x: çx -xoç< d, x < xo. В этом случае будем писать .

Если "e > 0 $ d: ¦(х) > e (¦(х) < - e) "х: çх-хо ç < d,

х ¹ хо Þ , ( ).

По аналогии с конечными односторонними пределами определяются односторонние бесконечные пределы , .







Дата добавления: 2015-08-12; просмотров: 392. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия