Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Бесконечно малые и бесконечно большие функции





Определение 4.4. Функция a = a(х) называется бесконечно малой функцией (или просто бесконечно малой) при х ® хo, если

Лемма 4.2. Предел существует и равен А Û ¦ (х) = A + a (х),

где a (х) - бесконечно малая.

Доказательство: Пусть , то, полагая

¦(х) - A = a (х), получим .

обратно, если ¦(х) = A + a(х) и .

Из леммы 3.2. следует, что если , то в некоторой окрестности Охо знак f(х) (х Î C) совпадает со знаком числа А.

Определение 4.5. Функция f = f(x) называется бесконечно большой при х ® хо, если "e > 0 $ d = d (e) > 0: ç¦(x)ç > e, "x: çx -xoç< d, x < xo. В этом случае будем писать .

Если "e > 0 $ d: ¦(х) > e (¦(х) < - e) "х: çх-хо ç < d,

х ¹ хо Þ , ( ).

По аналогии с конечными односторонними пределами определяются односторонние бесконечные пределы , .







Дата добавления: 2015-08-12; просмотров: 392. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия