Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дифференцируемость функции





Определение 1 (дифференцируемость в точке). Функция f(x) называется дифференцируемой в точке x, если приращение ∆ y этой функции в точке x представимо в виде

y =Ax + ά(∆ x) ∆ x, (1)

где A - некоторое число, не зависящее от ∆ x, а lim∆ x→ 0 ά (∆x) = 0.

В дальнейшем будем считать, что ά (0) = 0. В этом случае функция a(x) будет непрерывной в точке ∆ x = 0. Равенство 1 можно переписать иначе, так как функции ά (∆x), ∆x - бесконечно малые в точке ∆x = 0 и их произведение тоже бесконечно малая функция, поэтому

y =Ax +o (∆ x). (2)

Справедлива теорема

Теорема 1. Для того чтобы функция была дифференцируема в точке x, необходимо и достаточно, чтобы она имела в этой точке конечную производную.

Доказательство. Необходимость. Пусть функция дифференцируема, тогда ее приращение представимо в виде (1). Поделив (1) на ∆ x≠ 0 получим

y/x = A+ ά(∆ x).

Переходя к пределу в последнем выражении при ∆ x→ 0, получим, что A=f'(x).

Достаточность. Пусть существует конечная производная f'(x), то есть существует конечный предел

lim∆ x→ 0y/x = f' (x).

Обозначим a(∆ x) = ∆ y/ ∆ x-f'(x). Отсюда вытекает представление (1).

Пример 1. Доказать, что функция |x| не дифференцируема в точке x = 0.

Решение. Найдем приращение функции в точке x = 0:

y = |x|

Поэтому

lim∆ x→ -0y/x = - 1, lim∆ x→+ 0y/x = 1,

следовательно, функция |x| в точке x = 0 не дифференцируема.

Следующая теорема выражает связь между непрерывностью и дифференцируемостью.

Теорема 2 (дифференцируемость и непрерывность). Если
функция дифференцируема в точке x, то она непрерывна в этой точке.

Доказательство. Так как функция дифференцируема в точке x, то то ее приращение представимо в виде (1), из которого следует, что lim∆ x→ 0 ∆ y = 0, что означает непрерывность функции в данной точке.

Заметим, что из непрерывности в данной точке не следует дифференцируемость в этой точке. Это видно из рассмотренного выше примера 1.

Производная непрерывной функции не обязательно непрерывна. Если функция имеет непрерывную производную на некотором множестве X, то функция называется гладкой на этом множестве. Если производная допускает конечное число точек разрыва (причем первого рода), то такая функция называется кусочно гладкой.







Дата добавления: 2015-08-12; просмотров: 442. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия