Тема 6: РЕГУЛЯЦИЯ МЕТАБОЛИЗМА
Живая клетка является открытой динамической саморегулирующейся системой, метаболизм которой зависит как от внутренних потребностей, так и от факторов окружающей среды. Поэтому все существующие в клетке гены экспрессируются не одновременно, а по потребности. Кроме того и активность ферментов меняется в зависимости от нужд клетки. В этом и состоит сущность регуляции метаболизма. Регуляция метаболизма осуществляется на двух основных уровнях – генетическом и биохимическом. На генетическом уровне обмен веществ регулируется путем регуляции экспрессии генов, а именно усилением или подавлением транскрипции и трансляции. Второй уровень регуляции – биохимический осуществляется за счёт регуляции активности ферментов. Генетическая регуляция – грубый способ настройки метаболизма, биохимическая регуляция – более тонкая настройка. Молекулярной основой обоих уровней регуляции являютсяаллостерические ферменты и белки, имеющие обычно два типа активных центров. Один из них служит для присоединения низкомолекулярных эффекторов, которые могут влиять на проявление активности второго активного центра, путем изменения пространственной структуры белка. При регуляции ферментативной активности (биохимический уровень) – сами ключевые ферменты того или иного метаболического цикла являются аллостерическими. Они имеют два типа активных центров – каталитический (для связывания с субстратом) и эффекторный (для связывания с эффектором – активатором или ингибитором). Если фермент связывается с активатором, изменяется его конформация и, в том числе, пространственная структура каталитического центра. Это способствует облегчению связывания фермента с субстратом и усиливает ферментативную активность. Если эффектор является ингибитором, то его присоединение к эффекторному центру фермента ослабляет или делает невозможным взаимодействие субстрата с каталитическим центром и ведет к понижению или полному угнетению ферментативной активности. В регуляции экспрессии генов(генетической уровень) также участвуют аллостерические белки. Они выступают в роли белков-регуляторов, которые связываются с ДНК в промоторной зоне гена (или оперона) в области оператора и могут либо усиливать, либо подавлять транскрипцию. Один центр белка-регулятора служит для присоединения к ДНК, второй центр – для связывания эффектора. Аллостерические белки-регуляторы выступают в роли посредников между ДНК и эффектором. Эффекторами, способными «включать» или «выключать» гены, являются: · в катаболических генах (оперонах)– самисубстраты (например, углеводы), которые подлежат расщеплению, они выступают активаторами для белка-регулятора, т.е. выполняют функцию «включателей» гена; · в анаболических оперонах – конечные продукты синтеза (например, аминокислоты, нуклеотиды), они выступают в роли корепрессоров для белка-регулятора и, связываясь с ним, «выключают» транскрибирование ферментов, необходимых для их собственного синтеза. Механизмы регуляции метаболизма на генетическом уровне впервые были изучены на прокариотах (в оперонах кишечной палочки) в работах Жакоба и Моно еще в 40х-60х годах ХХ столетия. В настоящее время установлено, что регуляция экспрессии генов осуществляется на уровне транскрипции – при синтезе и-РНК и на уровне трансляции – при синтезе белка на рибосомах. На уровне транскрипции выявлены такие механизмы регуляции: · положительный и отрицательный контроль; · индукция и репрессия; · аутогенный контроль; · катаболитная репрессия; · смешанные механизмы регуляции; · регуляция посредством взаимодействия с энхансерами и сайленсерами (у эукариот)
На уровне трансляции выявлены следующие механизмы: · аттенуация путем образования альтернативных шпилек на и-ДНК (изучена у прокариот), · регуляция трансляции на уровне сборки рибосом; · регуляция трансляции с помощью факторов инициации, элонгации и терминации.
|