Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дискретные преобразования Фурье (ДПФ) и обратные ДПФ.





Комплексная форма:

, где Сn – коэффициенты ряда Фурье. (*)

. (**)

Модулированная импульсная последовательность (МИП):

Математическая модель МИП получается из динамического представления:

Дискретизируя, получим .

Пусть дискретный сигнал состоит из N -отсчетов на отрезке [0,Т], т.е. задан отсчетами x0 , x1, …, xN -1;

Дальнейший анализ состоит в том, чтобы продолжить периодически на числовой оси с периодом Т дискретизировать. Тогда к такому сигналу можно применить комплексную форму ряда Фурье, только частоту ω1 заменим на или . Тогда коэффициенты ряда Фурье:

Коэффициенты спектра ДПФ: .

Восстановление МИП (обратное ДПФ): .

Последние 2 выражения – это аналоги преобразований (*) и (**). Недостаток же состоит в том, что надо вычислить много точек N 2. Поэтому существует алгоритм «быстрого» преобразования Фурье (БПФ) в Matlab (FFT). Идея: исходная последовательность дискретных отсчетов делится на две подпоследовательности (например четную и нечетную). Каждая из них делится еще на две подпоследовательности, и так до конца, пока не останется пара отсчетов. Для них определяются коэффициенты ряда Фурье, а затем по ним восстанавливаются коэффициенты более высших подпоследовательностей по подмеченным простым закономерностям:

.

.

В итоге, число вычислений = .

 

 

Частотно – временной анадиз (Вейвлет-преобразования)

Wavelet – маленькая волна.

Недостаток преобразований Фурье в том, что при анализе процессов с локальными изменениями он является громоздким. Поэтому был разработан «оконный» метод анализа, который использует другой базис, называемый вейвлетами. При

этом в нужную область процессов «подтягивается» вейвлет (его копии) и из этих вейвлетов и конструируется локальное изменение процессов.

Требования к вейвлету:

1) Он должен осциллировать в окрестности определенной точкой и резко убывать при удалении от неё, а площадь под ним равна нулю.

2) Энергия вейвлета должна быть конечной

Примеры вейвлетов а) вейвлет Добоши

б) вейвлет Морле

в) «Мексиканская шляпа»

в) это вторая производная функции Гаусса


Вейвлет-преобразование это аналог преобразования Фурье, но не прямой аналог. По Фурье ядром преобразования является экспонента

А в вейвлет-преобразованиях ядром является вейвлет, смещенный по оси времени в нужную точку процесса, а также растянутый или сжатый в a раз.

x – размерность времени, с.

a – размерность периода, с.

- частота.

Вейвлет-преобразования бывают:

1-аналоговые;

2-дискретные.

(28)

Коэффициенты (28) показывают, какие характеристики частоты содержатся в сигнале в окрестности точки X, куда подтянули вейвлет.

В (28) содержится и частотная (как в Фурье) и временная информация, поэтому вейвлеты могут быть изображены в пространстве.

 

 


Восстановление сигнала по вейвлет коэффициентам проводится:

 







Дата добавления: 2015-08-12; просмотров: 487. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия