Структура потока E1 8 страница
Рис. 6.45. Однонаправленное кольцо В случае двунаправленного кольца с двумя волокнами удвоение сигнала не производится. При нормальной работе каждый входной поток направляется вдоль кольца по кратчайшему пути в любом направлении (отсюда и название "двунаправленное"). При возникновении отказа посредством МВВ на обоих концах отказавшего участка осуществляется переключение всего потока информации, поступавшего на этот участок, в обратном направлении. О таком кольце также говорят, что в нем осуществляется переключение секций или защита с совместно используемым резервом. Пример двунаправленного кольца приведен на Рис. 6.46 и Рис. 6.47. На них показаны схемы прохождения сигналов обоих направлений передачи для одного соединения при нормальном режиме работы (Рис. 6.46) и в аварийном режиме при отказе одного из участков кольца, перечеркнутого крестом (Рис. 6.47). Рис. 6.46. Двунаправленное кольцо в нормальном режиме Рис. 6.47. Двунаправленное кольцо в аварийном режиме Возможно также двунаправленное кольцо с четырьмя волокнами. Оно обеспечивает более высокий уровень отказоустойчивости, чем кольца с двумя волокнами, однако затраты на его построение существенно больше, поэтому такой вариант применяется реже. Двунаправленное кольцо в большинстве случаях оказывается более экономичным, требуя меньшую пропускную способность. Это объясняется тем, что сигналы, передаваемые на различных непересекающихся участках такого кольца, могут использовать одни и те же емкости (как в основном, так и в аварийном режимах работы). В то же время однонаправленное кольцо проще в реализации. Анализ типичных ситуаций показывает, что каждый из двух видов кольцевой архитектуры имеет свою область предпочтительного применения. Однонаправленные кольца больше подходят для случаев центростремительного трафика. Это типично для сетей доступа, предназначенных для подключения пользователей к ближайшему узлу. Двунаправленные кольца более выгодны при достаточно равномерном распределении трафика, при котором становится заметным их преимущество в пропускной способности. Поэтому их применение целесообразно для соединительных сетей. При обоих вариантах возможно сохранение полной работоспособности сети при любом одиночном отказе. Рис. 6.50. Объединение колец посредством МВВ Схема объединения колец посредством МВВ представлена на Рис. 6.50. При этом несколько МВВ образуют своего рода распределенный узел оперативного переключения. Такой вариант возможен, когда число колец невелико и потоки между ними небольшие. Гораздо большие возможности предоставляет использование АОП (Рис. 6.51). При этом, как видно из рисунка, могут быть организованы и логические кольца, охватывающие различные цепочки МВВ. Вообще применение смешанной архитектуры, использующей как кольцевые структуры, так и АОП, позволяет эффективно строить сети, обеспечивая тот же уровень отказоустойчивости, что и у чисто кольцевой сети, при меньшей суммарной пропускной способности всех линий. Рис. 6.51. Объединение колец посредством АОП Наиболее прост и дешев вариант объединения колец, когда два смежных кольца имеют только один общий узел. Однако он обладает тем недостатком, что при выходе из строя этого узла связь между кольцами прерывается. Поэтому обычно рекомендуется применять для сопряжения колец два узла. Это обеспечивает устойчивость сети по отношению к одиночным отказам элементов. В некоторых случаях требуется обеспечить возможность бесперебойной работы не только при любых одиночных отказах, но и при любом сочетании двух одновременно неработоспособных элементов в различных кольцах (по одному в каждом). Для этого каждый поток, направляемый в смежное кольцо, должен достигать обоих узлов сопряжения, а эти узлы оснащаются специальными устройствами для выбора и переключения сигналов. 74. Методы дискретной модуляции. Одной из основных тенденций развития сетевых технологий является передача в одной сети как дискретных, так и аналоговых по своей природе данных. Источниками дискретных данных являются компьютеры и другие вычислительные устройства, а источниками аналоговых данных являются такие устройства, как телефоны, видеокамеры, звуко- и видеовоспроизводящая аппаратура. На ранних этапах решения этой проблемы в территориальных сетях все типы данных передавались в аналоговой форме, при этом дискретные по своему характеру компьютерные данные преобразовывались в аналоговую форму с помощью модемов. Однако по мере развития техники съема и передачи аналоговых данных выяснилось, что передача их в аналоговой форме не позволяет улучшить качество принятых на другом конце линии данных, если они существенно исказились при передаче. Сам аналоговый сигнал не дает никаких указаний ни о том, что произошло искажение, ни о том, как его исправить, поскольку форма сигнала может быть любой, в том числе и такой, которую зафиксировал приемник. Улучшение же качества линий, особенно территориальных, требует огромных усилий и капиталовложений. Поэтому на смену аналоговой технике записи и передачи звука и изображения пришла цифровая техника. Эта техника использует так называемую дискретную модуляцию исходных непрерывных во времени аналоговых процессов. Рис. 2.19. Дискретная модуляция непрерывного процесса Амплитуда исходной непрерывной функции измеряется с заданным периодом - за счет этого происходит дискретизация по времени. Затем каждый замер представляется в виде двоичного числа определенной разрядности, что означает дискретизацию по значениям функции - непрерывное множество возможных значений амплитуды заменяется дискретным множеством ее значений. Устройство, которое выполняет подобную функцию, называется аналого-цифровым преобразователем (АЦП). После этого замеры передаются по каналам связи в виде последовательности единиц и нулей. При этом применяются те же методы кодирования, что и в случае передачи изначально дискретной информации, то есть, например, методы, основанные на коде B8ZS или 2В 1Q. На приемной стороне линии коды преобразуются в исходную последовательность бит, а специальная аппаратура, называемая цифро-аналоговым преобразователем (ЦАП), производит демодуляцию оцифрованных амплитуд непрерывного сигнала, восстанавливая исходную непрерывную функцию времени. При использовании метода ИКМ для передачи одного голосового канала необходима пропускная способность 56 или 64 Кбит/с в зависимости от того, каким количеством бит представляется каждый замер. Если для этих целей используется 7 бит, то при частоте передачи замеров в 8000 Гц получаем: 8000 * 7 = 56000 бит/с или 56 Кбит/с; а для случая 8-ми бит: 8000 * 8 = 64000 бит/с или 64 Кбит/с. 75. Обнаружение речевых сигналов. Устройств управления голосом. В настоящее время научное сообщество вкладывает гигантское количество денег в развитие ноу-хау и научно-исследовательские разработки для решения проблем автоматического распознавания и понимания речи. Это стимулируется практическими требованиями, связанными с созданием системы военного и коммерческого назначения. Не касаясь первого из них, можно указать, что только в европейском сообществе объем продаж систем гражданского назначения составляет несколько миллиардов долларов. При этом следует обратить внимание на то, что в практическом использовании отсутствуют системы, считающиеся по непонятным причинам вершиной развития систем автоматического распознавания речи. Это системы, которые можно назвать демонстрационными и которые 50 лет назад назывались «фонетическими печатающими машинками». Их целью является перевод речи в соответствующий письменный текст.
В настоящее время в среде «речевиков» сложилось представление, что конечной и высшей целью является создание именно «фонетической печатающей машинки», а универсальным методом решения всех речевых проблем являются «скрытые Марковские модели» (СММ). Остановимся на возможностях и недостатках соответствующих систем автоматического распознавания речи (анонсируемые сегодня возможностью распознавания сотен и даже тысяч слов с надежностью до 98%). От пользователя требуется предварительная настройка системы на его голос от нескольких десятков минут до нескольких часов предварительного наговаривания текстов. Так как слова, включенные даже в хорошо и аккуратно произносимый текст, оказываются как бы плавающими в океане омонимии, то количество ошибок (словесных) возрастает приблизительно в 5 раз. Беглое отслеживание таких ошибок, кроме случаев возникновения нелепых текстов, уже затруднительно. Аппарат коррекции ошибок в большинстве демонстрационных систем слабо отлажен. Все сказанное говорит о том, что в качестве конечной цели предлагаемые демонстрационные системы «речь-текст» вряд ли представляют интерес. Это не исключает возможности использования их в качестве полигона для оценки научных идей, но в этом случае должны отчетливо излагаться те модели, которые закладываются в данные системы автоматического распознавания и каким образом должна проверяться их практическая перспективность. Таким образом, мы переходим на противоположный конец триады «практические системы - речевые технологии - речевая наука».
Системы первой группы - системы распознавания речи и их частный случай - системы распознавания речевых команд, т.е. распознавание изолированных слов, а не слитной речи. Такие системы весьма полезны на практике, и возросшая необходимость в них связана в первую очередь с появлением большого количества доступных человеку разнообразных устройств (персональные, мобильные и карманные компьютеры, коммуникаторы и мобильные телефоны, игровые и многофункциональные мультимедийные устройства с достаточной вычислительной мощностью) в сочетании с бурным развитием телекоммуникаций в современном мире. Растёт важность массового внедрения новых интерфейсов взаимодействия человека с техническими системами, поскольку традиционные интерфейсы во многом уже достигли своего совершенства, а вместе с ним и своих пределов. При традиционно высокой значимости информации, поступающей к нам через органы зрения, и её высокой доли среди всей сенсорной информации, считающейся равной порядка 85%, этот канал восприятия человека становится в значительной степени перегружен, и первоочередной альтернативой здесь видится коммуникация именно по акустическому каналу. Кроме того, системы распознавания (а также синтеза) речи также крайне важны для людей с ограниченным зрением, и эта ниша для их применения активно развивается, прежде всего, в области мобильной телефонии, а также в бытовой технике (для управления разнообразными домашними устройствами). Для помощи таким людям производители вводят в свои устройства возможности управления посредством голосовых команд, а также дублирования экранной информации голосом. И в первую очередь от таких продуктов требуется распознавание ограниченного набора команд пользователя, а не слитной речи с большим или неограниченным словарём. Благодаря стандартизации платформ и операционных систем телефонов расширяется круг сторонних разработчиков программных продуктов с данной функциональностью. Аппаратная база таких систем также может быть весьма разнообразной и оказывать заметное влияние на итоговую эффективность системы распознавания в целом. Аппаратная часть систем распознавания уже не является самым узким местом и способна выполнять качественную оцифровку речевого сигнала с требуемыми параметрами, а также обеспечивает требуемые вычислительные мощности для реализации необходимых алгоритмов предобработки и работы с моделями слов.
|