Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Распределение Максвелла. Полученная ранее барометрическая формула обязана своим видом тому, что скорости молекул не одинаковы





 

Полученная ранее барометрическая формула обязана своим видом тому, что скорости молекул не одинаковы, а распределены определенным образом. Характер этого распределения и определяет вид зависимости плотности молекул от высоты.

n= n0е(-mg/kT)x

Пользуясь этой формулой можно найти вид функции распределения молекул по скорости.

Возьмем сосуд с газом в пустом пространстве в поле сил тяжести. Газ находится в состоянии равновесия и его молекулы каким-то образом распределены по скорости. Сила тяжести действует на Z компоненту скорости (по вертикали), поэтому найдем распределение молекул по значению составляющей скорости vz. Движение вверх вдоль оси Z сопровождается уменьшением Z компоненты скорости. Если на начальной высоте Z0 скорость равна vz0, то на высоте Z значение vz можно найти из закона сохранения энергии:

m(vz0)2/2= m(vz0)2/2+mgZ (*)

Молекулы с энергией m(vz0)2/2≤mgZ не могут подняться выше Z=(vz0)2/2g, они после подъема до Z падают вниз c ускорением.

Выделим на высоте Z слой dZ с площадью S=1м2. Газ в слое состоит из движущихся вверх и вниз молекул (нас интересуют молекулы вдоль оси Z). Разница между молекулами снизу и сверху состоит в том, что молекулы, приходящие снизу, имеют Z-компоненту скорости с v≥√2gZ, в то время, как молекулы, приходящие сверху, могут иметь Z-компоненту с любыми скоростями от 0 до ∞.

В условиях равновесия число молекул в слое должно быть постоянно, число молекул, проходящих сверху вниз, должно быть равно числу молекул, проходящих снизу вверх. На высоте Z0 число молекул в единице объема с Z компонентой скорости, лежащей в интервале от vz0 до vz0+dvz0 определяется выражением: dnz0= nz0f(vz0)dvz0

∞ √2gz
∞ √2gz
В единицу времени слой на высоте Z пересекает nz0f(vz0)dvz0 молекул, а общее число молекул, пересекающих слой снизу вверх (обозначим его через N) равно

N=∫nz0vz0f(vz0)dvz0= nz0∫vz0f(vz0)dvz0

Таким же образом число молекул, пересекающих слой сверху N↓=∫nzvzf(vz)dvz=nz∫ vzf(vz)dvz

∞ √2gz
Приравняв Nи N↓, разделив на nz0 и учтя барометрическую формулу nz/nz0(-mg/kT)z

Получим: ∫f(vz0)vz0dvz0= е(-mg/kT)z ∫ f(vz)vzdvz

Из закона сохранения энергии (*) при дифференцировании получим: vz0dvz0= vzdvz, тогда

∫f(vz0)vzdvz=e-∫f(vz)vzdvz

заменили предел интегрирования т. к. vZ изм. от 0 до µ

то есть f(vz)=f(vz0(-mg/kT)z (**)

Сравнивая это с законом сохранения энергии (*) можно убедится, что функции f(v) должны иметь вид:

f(vz)=Ае и f(vz0)=Ae[D1]

Значит f(vz)=Ае

Число молекул в единице объема, с Z компонентой скорости, лежащей в интервале от vZ до vZ+ dvZ выражается формулой

dn=nAe dvZ; a dn/n=Ae dvz

∞ -∞
∞ -∞
вероятность того, что Z-комп. скорости любой молекулы газа равна ZZ с точностью до dvZ.

Постоянная А находится из усл. нормировки ∫ dn/n=A∫ e- dvz=1

∞ -∞
Вероятность того, что молекула газа обладает скоростью с любым значением Z компоненты: А=(∫ е- dvz)-1

 
∞ -∞
Вводится переменная х2 = m(vz)2/2kT => vZ = √2kT/m x => dvz = √ dx

Интеграл сводится к ∫ e dx = √ π и тогда A = √m/2πkT

И формула распределения принимает вид: f(vz) = dn/ndvZ = (m/2πkT)1/2×e[D2]

f(vZ)→0 при vZ→∞

Видно,что доля молекул с Z-компонентой скорости равной 0 не равна 0, она равна А и с повышением Т уменьшается.

Мы получили распределение молекул по Z- составляющей скорости в поле сил тяжести, но это не означает, что распределение связано с действием силы тяжести. И что mg создает это распределение. Сама барометрическая формула является следствием распределения молекул по скорости. Сила тяжести лишь «проявила» существование в газе распределения, поэтому в f(v) сила тяжести не входит (нет g).

Очевидно, что совершенно такие же распределения должны быть и по другим компонентам скорости:

dn/ndvx = Ae[D3]

dn/ndvy = Ae[D4]

Теперь нужно найти вероятность того, что скорости молекул удовлетворяют трем условиям:

vx лежит в пределах от vx до vx+dvx , vy лежит в пределах от vy до vy+dvy , а vz лежит в пределах от vz до vz+dvz. Значения составляющих скоростей молекул по каждой из осей координат не зависят от значений по другим осям. Поэтому, вероятность того, что скорость молекулы одновременно удовлетворяет трем условиям является «вероятностью сложного события», т.е. равна произведению вероятностей.

Если обозначить число молекул в единице объема газа dnxyz с составляющими по осям dnx, dny, dnz,то

dnxyz/n = A3e[D5] dvxdvydvz v2 = Σ(vi)2

Эта формула показывает, сколько молекул из числа находящихся в единице объема обладают скоростями, составляющие которых по осям координат лежат в интервале между vx и vx+dvx, vy и vy+dvy, vz и vz+dvz, т.е. обладают скоростью, лежащей в интервале заданном и по величине и по направлению. В распределении необходимо учесть все любые направления движения.

Если собрать все молекулы единицы объема газа со скоростями в интервале от v до v+dv по всем любым направлениям и выпустить их, то они, разлетаясь по всем направлениям, через 1 с окажутся равномерно распределенными в шаровом слое радиусом v и толщиной dv. Число молекул в единице объема этого слоя (объем скоростей) такое же, как и в параллелепипеде объемом dvxdvydvz. Число же молекул во всем слое – это и есть число молекул в единице объема газа, независимо от направления, скорости которых лежат в интервале от v до v+dv:

dn = n(m/2πkT)3/2e[D6] dΩ; dΩ = 4πv2dv, отсюда:

 

dn/n =(4/√π)(m/2kT) 3/2 v2 dv

Это и есть закон Максвелла распределения молекул по скоростям.

dn/n – вероятность того, что у произвольно выбранной молекулы газа скорость окажется лежащей в интервале от v до v+dv, Другими словами, это доля всех молекул ед. объема, скорости кот. лежат в интервале от v до v+ dv. Величина

 

f(v) = dn/ndv = (4/√ π)(m/2kT) 3/2 v2 e[D7] dv – функция распределения молекул по скоростям.

Она определяет долю молекул в единице объема, скорости которых заключены в единичном интервале скоростей вблизи v, включающем данную скорость.

f(v) обращается в 0 при v = 0 и v = ∞, т.е., нет неподвижных молекул и нет молекул с бесконечно большой скоростью. Имеется максимум при vн, т.е. наибольшая часть молекул движется со скоростью v ≈ vн, т.е. вероятность того, что молекула имеет скорость vн – наибольшая, поэтому vн называют наиболее вероятной скоростью.

Пользуясь кривой распределения молекул по скоростям можно графически найти долю молекул dn/n в единице объема газа, скорости которых лежат в заданном интервале скоростей dv. Графически - это площадь с основанием dv и высотой f(v). Вся площадь под кривой f(v) соответствует общему числу молекул в единице объема.

Вид кривой зависит от природы газа и от Т. С повышением Т максимум смещается в сторону больших скоростей, но площадь под кривой остается постоянной, т.к. n = const.

При выводе распред. Максвелла по скоростям совершенно не принимали во внимание столкновения молекул между собой, хотя они изменяют скорость и влияют на распределение. В действительности именно благодаря столкновениям и устанавливается максвелловское распределение по скоростям. При каждом столкновении скорость одной молекулы увеличивается, другой уменьшается. Максвелл предположил, что равновесному состоянию отвечает такое, при котором число молекул, скорости которых увеличиваются при столкновении равно числу молекул, скорости которых уменьшаются при столкновениях. Такому состоянию и соответствует распределение Максвелла.

Позже Больцман показал, что если газ находится в состоянии с немаксвелловским распределением, то благодаря столкновениям он сам собой переходит в состояние с максвелловским распределением.

Распределение Максвелла (иногда говорят Максвелла -Больцмана) – это равновесное распределение. Теперь можно дать определение хаотичному движению: движение молекул полностью хаотично, если скорости распределены по закону Максвелла.







Дата добавления: 2015-08-12; просмотров: 450. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия