Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Функция распределения





В уравнение кинетической теории идеальных газов входит средняя кинетическая энергия поступательного движения молекул, которая определяется в свою очередь их средней квадратичной скоростью. Смысл средней квадратичной скорости заключается в том, что это та скорость, которой должны были бы обладать все молекулы (если бы их скорости были одинаковы, а направления равновероятны), чтобы давление было таким, каким оно является на опыте. На самом деле скорости молекул не одинаковы и это учитывалось при выводе основного уравнения молекулярно-кинетической теории. На это указывают и опытные факты, в частности, эксперименты Штерна и Ламмерта. Полоска мишени в этих опытах оказывалась не резкой, а размытой.

Об этом свидетельствует и закон распределения молекул по высоте, то есть, барометрическая формула. Если бы все молекулы имели одинаковую скорость, то распределение было бы иным. Они все поднимались бы до одинаковой высоты mgh = mv2/2 => h= v2/2g, а затем возвращались бы к Земле с первоначальной v, то есть вели бы себя, как брошенное тело. Все молекулы были бы равномерно распределены по высоте, а, значит, атмосфера имела бы резкую границу, чего нет на самом деле.

Благодаря хаотичным движениям молекул и их взаимным столкновениям, молекулы газа каким-то образом распределены по скорости, так, что среди них имеются как очень быстрые, так и очень медленные. Несмотря на хаотичность движений, на случайный характер столкновений и, вызываемых ими изменений скорости молекул, их распределение по скорости, как показывают теория и опыт, оказывается не случайным, не произвольным, а вполне определенным. На его характер не влияют ни столкновения между молекулами, ни даже внешние поля. Оно является однозначным и единственным. И это не только не противоречит представлению о хаотичности молекулярных движений, а именно этим и обусловлено.

При поиске распределения частиц по скорости требуется найти число частиц, скорости которых (или их компоненты vх, vy, vz) лежат в определенном интервале значений скорости (или компонентов скорости). Очевидно, что число ∆n частиц в единице объема, скорости которых лежат в некотором интервале от v до v+∆v, тем больше, чем больше этот интервал, то есть ∆n~∆v или ∆n=k∆v, где k – коэффициент пропорциональности.

Ясно, что ∆n зависит от самой скорости, т. к., в одинаковых интервалах, но для разных значений скорости число частиц будет разное, как не одинаково, например, число людей возраста 99-100 лет и 30-31 года при одинаковом размере интервала – 1 год. Значит, коэффициент пропорциональности k зависит от скорости, т.е., k = f(v).

Кроме того, величина Dn должна быть пропорциональна общему числу частиц в единице объема, значит, формула для Dn имеет вид: Dn = nf(v) ∆v или ∆n/n = f(v) ∆v. Здесь, ∆n/n – доля частиц в единице объема газа, скорости которых лежат в интервале от v до v+∆v, а f(v) – функция распределения. Задачей статистики является найти её вид. Её смысл ясен из выражения

 

f(v)= ∆n/n при ∆v=1 м/с

 

Т.е., это доля частиц, скорости которых заключены в единичном интервале скоростей Dv =1 вблизи скорости v.

Переходя к пределу, т.е. к вероятностям, можно записать:

 

dn/n=f(v)dv

 

здесь величина dn/n имеет смысл вероятности того, что любая частица, содержащаяся в единице его объема, имеет скорость в интервале dv вблизи скорости v.

Величине же функции распределения f(v) можно приписать смысл вероятности любой частице в единице объема иметь скорость, заключенную в единичном интервале скоростей dv вблизи скорости v. Ее называют, поэтому плотностью вероятности.

 

f(v)=dn/ndv

 







Дата добавления: 2015-08-12; просмотров: 361. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия