Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ПРОГРАММИРОВАНИЯ





Математическая формулировка задачи оптимизации часто может быть представлена как задача отыскания наибольшего или наименьшего значения функции нескольких переменных

(2.1)

где функция является количественной оценкой представляющего интерес качества объекта оптимизации.

На независимые переменные в общем случае можно наложить ограничения в виде равенств:

, (2.2а)

или неравенств:

, (2.2б)

или же тех и других одновременно.

Особые трудности возникают тогда, когда соотношение (2.1), определяющее значение критерия оптимальности для заданной совокупности значений независимых переменных , не может быть записано в явном виде. Наличие ограничений (2.2), которые могут быть заданы как трудновычислимые функции независимых переменных, еще более затрудняют отыскание оптимального решения и требует использования специальных приемов решения. Задачи такого типа, т.е. с нелинейными и трудновычислимыми соотношениями, определяющими критерий оптимальности (2.1) и ограничения (2.2), являются предметом рассмотрения специального раздела математики – нелинейного программирования [1,2,3].

Как правило, решение задач нелинейного программирования может быть найдено только численными методами, поэтому возникает необходимость применения вычислительной техники.

В большинстве своем методы нелинейного программирования могут быть охарактеризованы как многошаговые методы или методы последовательного улучшения начального решения.

Большинство методов нелинейного программирования используют идею движения в n-мерном пространстве в направлении оптимума. При этом из некоторого исходного или промежуточного состояния осуществляется переход в следующее состояние изменением состояния на величину , называемую шагом

. (2.3)

Очевидно, что для случая поиска минимума целевой функции должно выполняться условие

,

иначе перевод в состояние нецелесообразен.

Значительное число методов нелинейного программирования в соответствии со способом определения шага можно отнести к одному из трех основных классов:

1) градиентные методы;

2) безградиентные методы детерминированного поиска;

3) методы случайного поиска.







Дата добавления: 2015-08-12; просмотров: 375. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия