Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ПРИМЕНЕНИЕ СИМПЛЕКСНОГО МЕТОДА В ЗАДАЧАХ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ





Значительное число планово-производственных задач имеет выражение критерия оптимальности в виде линейной функции от входящих в него переменных. При этом на указанные переменные могут быть также наложены некоторые ограничения в форме линейных равенств или неравенств.

Примером подобных задач является задача отыскания такого распределения ограниченного количества сырья между различными производствами, когда общая стоимость получаемой продукции максимальна.

Решение этих задач, математическая формулировка которых сводится к требованию максимизации или минимизации критерия оптимальности, заданного в виде линейной функции независимых переменных с линейными ограничениями на них составляет задачу линейного программирования[1,2].

В задачах линейного программирования критерий оптимальности представляется в виде

, (1.1)

где – заданные постоянные коэффициенты, среди которых могут быть и равные нулю.

На значения переменных налагаются дополнительные условия, заданные в виде равенств и неравенств

, ; (1.2а)

, ; (1.2б)

, . (1.2в)

При этом предполагается , т.к. в большинстве экономических задач независимые переменные, имеющие конкретный физический смысл (единицу продукции, цены и т.д.), не могут быть отрицательными величинами.

Будем также считать, что все величины в ограничениях (1.2) отличны от нуля и положительны.

Число ограничений типа равенств не должно превышать число переменных . Общее же число неравенств может быть произвольным.

Коэффициенты в соотношениях (1.2) принимаются действительными числами, положительными или отрицательными, среди которых могут быть и равные нулю.

Оптимальным решением задачи линейного программирования, или как еще называют, оптимальным планом является совокупность неотрицательных значений переменных , которая удовлетворяет соотношениям (1.2) и обеспечивает в зависимости от постановки задачи максимальное или минимальное значение линейной функции (1.1).







Дата добавления: 2015-08-12; просмотров: 415. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Studopedia.info - Студопедия - 2014-2026 год . (0.012 сек.) русская версия | украинская версия