Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ПРИМЕНЕНИЕ СИМПЛЕКСНОГО МЕТОДА В ЗАДАЧАХ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ





Значительное число планово-производственных задач имеет выражение критерия оптимальности в виде линейной функции от входящих в него переменных. При этом на указанные переменные могут быть также наложены некоторые ограничения в форме линейных равенств или неравенств.

Примером подобных задач является задача отыскания такого распределения ограниченного количества сырья между различными производствами, когда общая стоимость получаемой продукции максимальна.

Решение этих задач, математическая формулировка которых сводится к требованию максимизации или минимизации критерия оптимальности, заданного в виде линейной функции независимых переменных с линейными ограничениями на них составляет задачу линейного программирования[1,2].

В задачах линейного программирования критерий оптимальности представляется в виде

, (1.1)

где – заданные постоянные коэффициенты, среди которых могут быть и равные нулю.

На значения переменных налагаются дополнительные условия, заданные в виде равенств и неравенств

, ; (1.2а)

, ; (1.2б)

, . (1.2в)

При этом предполагается , т.к. в большинстве экономических задач независимые переменные, имеющие конкретный физический смысл (единицу продукции, цены и т.д.), не могут быть отрицательными величинами.

Будем также считать, что все величины в ограничениях (1.2) отличны от нуля и положительны.

Число ограничений типа равенств не должно превышать число переменных . Общее же число неравенств может быть произвольным.

Коэффициенты в соотношениях (1.2) принимаются действительными числами, положительными или отрицательными, среди которых могут быть и равные нулю.

Оптимальным решением задачи линейного программирования, или как еще называют, оптимальным планом является совокупность неотрицательных значений переменных , которая удовлетворяет соотношениям (1.2) и обеспечивает в зависимости от постановки задачи максимальное или минимальное значение линейной функции (1.1).







Дата добавления: 2015-08-12; просмотров: 415. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия