Золотое сечение нельзя рассматривать само по
себе, отдельно, без связи с симметрией. Великий
русский кристаллограф Г. В. Вульф (1863—1925)
считал золотое сечение одним из проявлений сим-
метрии.
Золотое деление не есть проявление асиммет-
рии, чего-то противоположного симметрии. Соглас-
но современным представлениям золотое деле-
ние— это асимметричная симметрия. Сейчас в
науку о симметрии вошли такие понятия, как
статическая и динамическая симметрия. Статиче-
ская симметрия характеризует покой, равновесие,
а динамическая — движение, рост. Так, в природе
статическая симметрия представлена строением
кристаллов, а в искусстве характеризует покой,
равновесие и даже застылость. Динамическая сим-
метрия выражает активность, характеризует дви-
жение, развитие, ритм, она — свидетельство жизни.
Симметрии свойственны равные отрезки, равные
величины. Динамической симметрии свойственно
увеличение отрезков (или их уменьшение), и оно
выражается в величинах золотого сечения возра-
стающего или убывающего ряда.
Художественная форма, в основе построения
которой лежат пропорции золотого сечения, и осо-
бенно сочетание симметрии и золотого сечения,
является высокоорганизованной формой, способ-
ствующей наиболее ясному выражению содержа-
ния, наилегчайшему зрительному восприятию и
появлению у зрителя ощущения красоты.
Очень часто в одном и том же произведении
живописи встречается сочетание симметричного
деления на равные части по вертикали и деление
на неравные части по золотому сечению по гори-
зонталям.
Картина Леонардо да Винчи «Мадонна в гроте»
не строго симметрична, но в основе ее построе-
ния— симметрия (рис. 17, а). Все содержание
картины выражается в фигурах, которые размести-
лись в нижней ее части. Они вписываются в квад-
рат. Но художник не довольствовался таким фор-
матом. Он достраивает над квадратом прямоуголь-
ник золотого сечения (рис. 17, б). В результате
такого построения вся картина получила формат
золотого прямоугольника, поставленного верти-
кально. Радиусом, равным половине стороны квад-
рата, он описал окружность и получил полукружие
верхней части картины. Внизу дуга пересекла ось
симметрии иуказала размер еще одного прямо-
угольника золотого сечения в нижней части карти-
ны (рис. 17, в). Затем радиусом, равным стороне
квадрата, описывается новая дуга, которая дала
точки на вертикальных сторонах картины. Эти
точки помогли построить равносторонний треуголь-
ник, который и явился каркасом для построения
всей группы фигур. Все пропорции в картине яви-
лись производными от высоты картины. Они обра-
зуют ряд отношений золотого сечения и служат
основой гармонии форм и ритма, несущих в себе
скрытый заряд эмоционального воздействия. Ана-
логичным образом построена картина Рафаэля
«Обручение Марии» (рис. 18).
Если мы обратимся к древнерусской живописи,
иконам XV—XVI вв., то увидим такие же приемы
построения изображения. Иконы вертикального
формата симметричны по вертикали, а членения по
горизонталям осуществлены по золотому сечению.
Икона «Сошествие во ад» Дионисия и мастерской
(рис. 19) с математической точностью рассчитана
в пропорциях золотого сечения.
В иконе конца XV в. «Чудо о Флоре и Лавре»
осуществлено тройное отношение золотого сечения.
Сначала мастер разделил высоту иконы на две
равные части. Верхнюю отвел под изображение
ангела и святых. Нижнюю часть он разделил на
два неравных отрезка в отношении 3: 2. В итоге
получилось соотношение трех величин золотого се-
чения: а: Ь, как b: с. В числах это будет выглядеть
так: 100, 62, 38, а уменьшенные вдвое — 50, 31, 19.
О симметричности «Троицы» Андрея Рублева
написано много. Но никто не обратил внимания
на то, что по горизонталям и здесь осуществлен
принцип золотых пропорций (рис. 20). Высота
среднего ангела относится к высоте боковых анге-
лов, как их высота относится к высоте всей иконы.
Линия золотого сечения пересекает ось симметрии
по середине стола и чаши с жертвенным тельцем.
Это — композиционный замок иконы. На рисунке
показаны и более мелкие величины ряда золотого
сечения. Наряду с плавностью линий, колоритом
Рис. 17.
Использование симметрии и
золотого сечения в картине
Леонардо да Винчи «Мадон-
на в гроте»:
а — пропорции золотого сечения:
б — размещение персонажей
картины в квадрате; в — схема
линейного построения картины
Рис. 18.
Использование симме-
трии и золотого сече-
ния в картине Рафа-
эля «Обручение Ма-
рии
Рис. 19.
Золотые пропорции в линейном построении изображения на иконе «Сошествие в ад» Дионисия и мастерской (XVI в.)
Рис. 20.
Симметрия и золотые пропорции в линейном построении «Троицы» Андрея Рублева
Рис. 21.
Симметрия и золотые
пропорции в линейном
изображении «Успения»
Феофана Грека
|
Рис. 22.
Золотые пропорции в линейном построении изображения на плите фараона Нармера (3-е тыс. до н. э.)
пропорции иконы играют значительную роль в
создании того общего впечатления, которое испы-
тывает зритель при ее рассматривании.
Могучим хоралом представляется нашему взору
икона Феофана Грека «Успение» (рис. 21). Сим-
метрия и золотое сечение в построении придают
этой иконе такую мощь и стройность, какую мы
видим и ощущаем при виде греческих храмов и
слушании фуг Баха. Легко заметить, что компози-
ция «Успения» Феофана Грека и «Троицы» Андрея
Рублева одна и та же. Исследователи творчества
древнерусских художников отмечают, что заслуга
Феофана Грека состоит не столько в том, что он
писал фрески и иконы для русских соборов и церк-
вей, сколько в том, что он научил античной муд-
рости Андрея Рублева.
Завершим хвалу содружеству симметрии и
золотого сечения рассмотрением пропорций побед-
ной плиты египетского фараона Нармера (3-е тыс.
до н. э.). Прямоугольник золотого сечения — исход-
ная форма плиты Нармера (рис. 22). Плита
разбита на пояски, высота которых выдержана в
пропорциях золотого сечения. Высота фигуры фа-
раона— от верхнего пояска до нижнего — равна
62 частям высоты. Нижняя часть плиты от пояска
до края равна 24 частям, а верхняя, от верхнего
пояска до верхнего края,— 14 частям. Ритмический
строй оборотной стороны плиты несколько иной,
потому что содержание изображения потребовало
иного сопоставления пропорциональных величин.
Пропорции золотого сечения и симметрия дают
бесконечное разнообразие композиционных по-
строений как в самой природе, так и в произведе-
ниях искусства всех родов и видов.