Один из наиболее распространенных методов поиска факторов, метод главных компонент, состоит в последовательном поиске факторов. Пример, в котором две коррелированные переменные объединены в один фактор, показывает главную идею факторного анализа или, более точно, анализа главных компонент (это различие будет обсуждаться позднее). Если пример с двумя переменными распространить на большее число переменных, то вычисления становятся сложнее, однако основной принцип представления двух или более зависимых переменных одним фактором остается в силе.
Вначале ищется первый фактор, который объясняет наибольшую часть дисперсии, затем независимый от него второй фактор, объясняющий наибольшую часть оставшейся дисперсии, и т.д.
Смысл рисунка 5.2 в следующем. Для построения первого фактора берется прямая, проходящая через начало координат и облако рассеяния данных. Объектам можно сопоставить расстояния их проекций на эту прямую до центра координат, причем для одной из половин прямой (по отношению к нулевой точке) можно взять эти расстояния с отрицательным знаком. Такое построение представляют собой новую переменную, которую мы назовем осью. При построении фактора отыскивается такая ось, чтобы дисперсия переменных вокруг оси была минимальна. (Заметим, что в определенном смысле эта первая ось строится по той же модели, что регрессионная прямая в регрессионном анализе). Это означает, что этой осью объясняется максимум дисперсии переменных. Найденная ось после нормировки используется в качестве первого фактора. Если облако данных вытянуто в виде эллипсоида (имеет форму "огурца"), фактор совпадет с направлением, в котором вытянуты объекты, и по нему (по проекциям) с наибольшей точностью можно предсказать значения исходных переменных.