Классическое, геометрическое и статистическое определения вероятности. Вывод свойств вероятности из определений. Ограниченность классических определений вероятности.
Можно считать, что случаи представляют собой все множество исходов опыта. Пусть их число равно п (число возможных исходов), а при т из них происходит некоторое событие А (число благоприятных исходов). Определение 1.8. Вероятностью события А называется отношение числа исходов опыта, благоприятных этому событию, к числу возможных исходов: п р (А) = т - - классическое определение вероятности. Свойства вероятности. Из определения 1.8 вытекают следующие свойства вероятности: Свойство 1. Вероятность достоверного события равна единице. Доказательство. Так как достоверное событие всегда происходит в результате опыта, то все исходы этого опыта являются для него благоприятными, то есть т = п, следовательно, Р(А) = 1. Свойство 2. Вероятность невозможного события равна нулю. Доказательство. Для невозможного события ни один исход опыта не является благопри- ятным, поэтому т = 0 и р(А) = 0. Свойство 3. Вероятность случайного события есть положительное число, заключенное Между нулем и единицей. Доказательство. Случайное событие происходит при некоторых исходах опыта, но не при всех, следовательно, 0 < m < n, и из (1.1) следует, что 0 < p(A) < 1. Определение 1.9. Статистической вероятностью события считают его относительную
|