Целесообразность выполнения факторного анализа определяется наличием корреляций между переменными. Следует также ожидать, что переменные, тесно взаимосвязанные между собой, должны также тесно коррелировать с одним и тем же фактором или факторами.
Для проверки целесообразности использования факторной модели для анализа зависимости переменных существует несколько статистик. С помощью критерия сферичности Бартлетта проверяется нулевая гипотеза об отсутствии корреляций между переменными в генеральной совокупности: другими словами, рассматривается утверждение о том, что корреляционная матрица совокупности – это единичная матрица, в которой все диагональные элементы равны 1, а все остальные равны 0. Проверка с помощью критерия сферичности основана на преобразовании детерминанта корреляционной матрицы в статистику хи-квадрат. При большом значении статистики нулевую гипотезу отклоняют. Если же нулевую гипотезу не отклоняют, то целесообразность выполнения факторного анализа вызывает сомнения. Другая полезная статистика – критерий адекватности выборки Кайзера-Мейера-Олкина (КМО). Данный коэффициент сравнивает значения наблюдаемых коэффициентов корреляции со значениями частных коэффициентов корреляции. Небольшие значения КМО-статистики указывают на то, что корреляции между парами переменных нельзя объяснить другими переменными и что использование факторного анализа нецелесообразно.