Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Прямая задача теории погрешностей





 

Пусть в некоторой области W n-мерного действительного пространства рассматривается непрерывно дифференцируемая функция

 

z = f(x1, x2,..,xn).

 

Предположим, что в точке (x1, x2,..,xn) области W нужно вычислить значение
z = f(x1, x2,..,xn) и нам известны лишь приближенные значения и их погрешности.

Если воспользоваться формулой Лагранжа, то для приближенного значения функции можно получить оценку при малых :

 

 

Рассмотрим распространение погрешностей при выполнении арифметических операций. Пусть x, y – точные значения (x > 0, y > 0), – приближенные значения, – абсолютные, а – относительные погрешности значений

Если , тогда и из (1.3) следует, что . Приведем формулы определяющие погрешности арифметических операций.

 

1) При выполнении сложения:

 

 

2) При выполнении вычитания:

 

 

3) При выполнении умножения:

 

 

4) При выполнении деления:

 

 

 







Дата добавления: 2015-08-12; просмотров: 459. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия