Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Методы, применяемые после дисперсионного анализа





Дисперсионный анализ показывает – существует ли статистически существенное влияние изучаемого фактора на свойства объекта? Экспериментатора же помимо этого интересует также вопрос – а каково конкретное влияние фактора и как меняются свойства объекта при переходе от одного уровня фактора к другому? Другими словами – экспериментатору важно выяснить – существует ли статистически существенное различие в средних значениях по уровням фактора. Заметим, что в случае фактора с двумя уровнями этот вопрос не стоит. В самом деле, если дисперсионный анализ показал, что имеется статистически существенное влияние фактора, то автоматически существенно различаются и средние по этим двум уровням. А как быть, если число уровней фактора больше двух? Например, в рассмотренном выше примере, экспериментатора может заинтересовать вопрос: а если разница между красками B и D? Для них средние значения вроде бы близки (11,8 и 9,8 соответственно).

Для этих целей наиболее часто используется ранговый критерий Дункана

Общую схему применения этого критерия рассмотрим на вышеприведенном примере. Она состоит из следующих этапов.

1. Упорядочить k средних по возрастанию.

В нашем примере k=4 и упорядоченные средние представляются рядом:

 

Средние 9,8 11,8 20,6 29,8
Тип краски D B A C

 

2. Из таблицы дисперсионного анализа берется дисперсия ошибки с соответствующим числом степеней свободы.

В нашем случае: s2e = 8,35 при f = 16.

3. Вычисляется нормированная ошибка для среднего по испытанию:

, (7.4)

где m – число опытов в одном варианте испытаний.

В нашем случае:

.

4. Из таблицы критерия Дункана выписываются (k-1) рангов при выбранном уровне значимости и числе степеней свободы, соответствующем ошибке.

 

F Ранг
                         
  18,0 18,0 18,0 18,0 18,0 18,0 18,0 18,0 18,0 18,0 18,0 18,0 18,0
  6,09 6,09 6,09 6,09 6,09 6,09 6,09 6,09 6,09 6,09 6,09 6,09 6,09
  4,50 4,50 4,50 4,50 4,50 4,50 4,50 4,50 4,50 4,50 4,50 4,50 4,50
  3,93 4,01 4,02 4,02 4,02 4,02 4,02 4,02 4,02 4,02 4,02 4,02 4,02
  3,64 3,74 3,79 3,83 3,83 3,83 3,83 3,83 3,83 3,83 3,83 3,83 3,83
  3,46 3,58 3,64 3,68 3,68 3,68 3,68 3,68 3,68 3,68 3,68 3,68 3,68
  3,35 3,47 3,54 3,58 3,60 3,61 3,61 3,61 3,61 3,61 3,61 3,61 3,61
  3,26 3,39 3,47 3,52 3,55 3,56 3,56 3,56 3,56 3,56 3,56 3,56 3,56
  3,20 3,34 3,41 3,47 3,50 3,52 3,52 3,52 3,52 3,52 3,52 3,52 3,52
  3,15 3,30 3,37 3,43 3,46 3,47 3,47 3,47 3,47 3,47 3,47 3,47 3,47
  3,11 3,27 3,35 3,39 3,43 3,44 3,45 3,46 3,46 3,46 3,46 3,46 3,46
  3,08 3,23 3,33 3,36 3,40 3,42 3,44 3,44 3,46 3,46 3,46 3,46 3,46
  3,06 3,21 3,30 3,35 3,38 3,41 3,42 3,44 3,45 3,45 3,46 3,47 3,47
  3,03 3,18 3,27 3,33 3,37 3,39 3,41 3,42 3,44 3,45 3,46 3,47 3,47
  3,01 3,16 3,25 3,31 3,36 3,38 3,40 3,42 3,43 3,44 3,45 3,46 3,47
  3,00 3,15 3,23 3,30 3,34 3,37 3,39 3,41 3,43 3,44 3,45 3,46 3,47
  2,98 3,13 3,22 3,28 3,33 3,36 3,38 3,40 3,42 3,44 3,45 3,46 3,47
  2,97 3,12 3,21 3,27 3,32 3,35 3,37 3,39 3,41 3,43 3,45 3,46 3,47
  2,96 3,11 3,19 3,26 3,31 3,35 3,37 3,39 3,41 3,43 3,44 3,46 3,47
  2,95 3,10 3,18 3,25 3,30 3,34 3,36 3,38 3,40 3,43 3,44 3,46 3,47
  2,93 3,08 3,17 3,24 3,29 3,32 3,35 3,37 3,39 3,42 3,44 3,45 3,46
                         
  2,80 2,95 3,05 3,12 3,18 3,22 3,26 3,29 3,32 3,36 3,40 3,42 3,45
                         
2,77 2,92 3,02 3,09 3,15 3,19 3,23 3,26 3,29 3,34 3,38 3,41 3,44
                             

 

В нашем примере для f = 16 и =0,05 выписанные ранги выглядят следующим образом:

 

     
Ранги 3,00 3,15 3,23

 

5. Получить наименьшие значимые ранги путем умножения выписанных рангов на нормированную ошибку.

В нашем случае:

 

     
НЗР 3,876 4,070 4,173

 

6. Произвести сравнение наблюдаемых разностей между средними с вычисленными НЗР по схеме:

разница между рядом стоящими средними сравнивается с минимальным НЗР (при № = 2);

разница между средними через одно сравнивается с НЗР при № = 3;

разница между средними через два сравнивается с НЗР при № = 4 и т. д.

Если НЗР больше наблюдаемых разностей, то сравниваемые средние отличаются несущественно. Иначе различие между средними признается статистически значимым.

В нашем случае:

1) 11,8 – 9,8 = 2 <3,876

2) 20,6 – 9,8 = 10,8 > 4,070

3) 29,8 – 9,8 = 20 > 4,173

4) 20,6 – 11,8 = 8,8 >3,876

5) 29,8 – 11,8 = 18 > 4,070

6) 29,8 – 20,6 = 9,2 > 3,876

В результате сравнения обнаружено, что первое и второе среднее отличаются несущественно, а разница между остальными средними статистически значима.

Результаты сравнения можно наглядно представить на одномерной шкале.

D B A C

 
 

9,8 11,8 20,6 29,8

 

Здесь средние, отличающиеся несущественно, имеют одну общую черту.

Таким образом по результатам испытаний защитных красок можно сказать следующее:

краски D и B обладают наилучшими защитными свойствами и примерно одинаковы. Наихудшими защитными свойствами обладает краска C. Краска А является промежуточной по защитным свойствам.

 

Варианты заданий

Варианты заданий взять из Приложения 2 «Районы и города Чувашии в цифрах».

Во всех заданиях методом дисперсионного анализа выяснить имеется ли различие в средних значениях показателя по уровням изучаемого фактора и дать экономическую интерпретацию полученных результатов.







Дата добавления: 2015-08-12; просмотров: 828. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия