Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Методы, применяемые после дисперсионного анализа





Дисперсионный анализ показывает – существует ли статистически существенное влияние изучаемого фактора на свойства объекта? Экспериментатора же помимо этого интересует также вопрос – а каково конкретное влияние фактора и как меняются свойства объекта при переходе от одного уровня фактора к другому? Другими словами – экспериментатору важно выяснить – существует ли статистически существенное различие в средних значениях по уровням фактора. Заметим, что в случае фактора с двумя уровнями этот вопрос не стоит. В самом деле, если дисперсионный анализ показал, что имеется статистически существенное влияние фактора, то автоматически существенно различаются и средние по этим двум уровням. А как быть, если число уровней фактора больше двух? Например, в рассмотренном выше примере, экспериментатора может заинтересовать вопрос: а если разница между красками B и D? Для них средние значения вроде бы близки (11,8 и 9,8 соответственно).

Для этих целей наиболее часто используется ранговый критерий Дункана

Общую схему применения этого критерия рассмотрим на вышеприведенном примере. Она состоит из следующих этапов.

1. Упорядочить k средних по возрастанию.

В нашем примере k=4 и упорядоченные средние представляются рядом:

 

Средние 9,8 11,8 20,6 29,8
Тип краски D B A C

 

2. Из таблицы дисперсионного анализа берется дисперсия ошибки с соответствующим числом степеней свободы.

В нашем случае: s2e = 8,35 при f = 16.

3. Вычисляется нормированная ошибка для среднего по испытанию:

, (7.4)

где m – число опытов в одном варианте испытаний.

В нашем случае:

.

4. Из таблицы критерия Дункана выписываются (k-1) рангов при выбранном уровне значимости и числе степеней свободы, соответствующем ошибке.

 

F Ранг
                         
  18,0 18,0 18,0 18,0 18,0 18,0 18,0 18,0 18,0 18,0 18,0 18,0 18,0
  6,09 6,09 6,09 6,09 6,09 6,09 6,09 6,09 6,09 6,09 6,09 6,09 6,09
  4,50 4,50 4,50 4,50 4,50 4,50 4,50 4,50 4,50 4,50 4,50 4,50 4,50
  3,93 4,01 4,02 4,02 4,02 4,02 4,02 4,02 4,02 4,02 4,02 4,02 4,02
  3,64 3,74 3,79 3,83 3,83 3,83 3,83 3,83 3,83 3,83 3,83 3,83 3,83
  3,46 3,58 3,64 3,68 3,68 3,68 3,68 3,68 3,68 3,68 3,68 3,68 3,68
  3,35 3,47 3,54 3,58 3,60 3,61 3,61 3,61 3,61 3,61 3,61 3,61 3,61
  3,26 3,39 3,47 3,52 3,55 3,56 3,56 3,56 3,56 3,56 3,56 3,56 3,56
  3,20 3,34 3,41 3,47 3,50 3,52 3,52 3,52 3,52 3,52 3,52 3,52 3,52
  3,15 3,30 3,37 3,43 3,46 3,47 3,47 3,47 3,47 3,47 3,47 3,47 3,47
  3,11 3,27 3,35 3,39 3,43 3,44 3,45 3,46 3,46 3,46 3,46 3,46 3,46
  3,08 3,23 3,33 3,36 3,40 3,42 3,44 3,44 3,46 3,46 3,46 3,46 3,46
  3,06 3,21 3,30 3,35 3,38 3,41 3,42 3,44 3,45 3,45 3,46 3,47 3,47
  3,03 3,18 3,27 3,33 3,37 3,39 3,41 3,42 3,44 3,45 3,46 3,47 3,47
  3,01 3,16 3,25 3,31 3,36 3,38 3,40 3,42 3,43 3,44 3,45 3,46 3,47
  3,00 3,15 3,23 3,30 3,34 3,37 3,39 3,41 3,43 3,44 3,45 3,46 3,47
  2,98 3,13 3,22 3,28 3,33 3,36 3,38 3,40 3,42 3,44 3,45 3,46 3,47
  2,97 3,12 3,21 3,27 3,32 3,35 3,37 3,39 3,41 3,43 3,45 3,46 3,47
  2,96 3,11 3,19 3,26 3,31 3,35 3,37 3,39 3,41 3,43 3,44 3,46 3,47
  2,95 3,10 3,18 3,25 3,30 3,34 3,36 3,38 3,40 3,43 3,44 3,46 3,47
  2,93 3,08 3,17 3,24 3,29 3,32 3,35 3,37 3,39 3,42 3,44 3,45 3,46
                         
  2,80 2,95 3,05 3,12 3,18 3,22 3,26 3,29 3,32 3,36 3,40 3,42 3,45
                         
2,77 2,92 3,02 3,09 3,15 3,19 3,23 3,26 3,29 3,34 3,38 3,41 3,44
                             

 

В нашем примере для f = 16 и =0,05 выписанные ранги выглядят следующим образом:

 

     
Ранги 3,00 3,15 3,23

 

5. Получить наименьшие значимые ранги путем умножения выписанных рангов на нормированную ошибку.

В нашем случае:

 

     
НЗР 3,876 4,070 4,173

 

6. Произвести сравнение наблюдаемых разностей между средними с вычисленными НЗР по схеме:

разница между рядом стоящими средними сравнивается с минимальным НЗР (при № = 2);

разница между средними через одно сравнивается с НЗР при № = 3;

разница между средними через два сравнивается с НЗР при № = 4 и т. д.

Если НЗР больше наблюдаемых разностей, то сравниваемые средние отличаются несущественно. Иначе различие между средними признается статистически значимым.

В нашем случае:

1) 11,8 – 9,8 = 2 <3,876

2) 20,6 – 9,8 = 10,8 > 4,070

3) 29,8 – 9,8 = 20 > 4,173

4) 20,6 – 11,8 = 8,8 >3,876

5) 29,8 – 11,8 = 18 > 4,070

6) 29,8 – 20,6 = 9,2 > 3,876

В результате сравнения обнаружено, что первое и второе среднее отличаются несущественно, а разница между остальными средними статистически значима.

Результаты сравнения можно наглядно представить на одномерной шкале.

D B A C

 
 

9,8 11,8 20,6 29,8

 

Здесь средние, отличающиеся несущественно, имеют одну общую черту.

Таким образом по результатам испытаний защитных красок можно сказать следующее:

краски D и B обладают наилучшими защитными свойствами и примерно одинаковы. Наихудшими защитными свойствами обладает краска C. Краска А является промежуточной по защитным свойствам.

 

Варианты заданий

Варианты заданий взять из Приложения 2 «Районы и города Чувашии в цифрах».

Во всех заданиях методом дисперсионного анализа выяснить имеется ли различие в средних значениях показателя по уровням изучаемого фактора и дать экономическую интерпретацию полученных результатов.







Дата добавления: 2015-08-12; просмотров: 828. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия