Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Проверка уравнения регрессии на адекватность





По мере увеличения степени полинома будет наблюдаться все лучшее соответствие экспериментальных и расчетных данных.

Очевидно, что повышать степень полинома до бесконечности не имеет смысла. Поэтому встает вопрос: а на какой степени полинома остановится?

Критерием остановки расчетов является получение адекватного описания данных.

Для решения этого вопроса используется следующая схема вычислений:

- для каждого уравнения регрессии рассчитывается остаточная сумма квадратов. Для ее расчета используется функция Excel СУММКВРАЗН. Для вышеприведенного примера расчет остаточной суммы квадратов уравнения первой степени производится следующим образом:

- курсор устанавливается в G12, вызывается функция СУММКВРАЗН и в качестве ее аргументов указываются столбцы А и G (A2:A11;G2:G11).

- аналогично в строке 12 столбцов H, I, J производятся расчеты остаточных сумм для полиномов второй, третьей и четвертой степени.

- в F12 отдельно рассчитывается остаточная сумма квадратов для полинома нулевой степени. Для ее расчета в указанную ячейку вводится формула =ДИСПА(A2:A11)*9 (здесь 9 это число измерений минус один);

- дальнейшие расчеты показываются на следующем примере.

Пусть для обработки было представлено 10 измерений – N=10.

И пусть в результате расчетов остаточных сумм квадратов для уравнений разных степеней получены следующие результаты:

Степень уравнения          
Остаточная сумма квадратов          

 

Как следует из таблицы, с увеличением степени полинома остаточная суммы квадратов уменьшается, т.е. степень соответствия уравнения описываемым данным увеличивается. В то же время видно, что для больших степеней уменьшение остаточной суммы практически прекращается. Поэтому необходимо объективное правило, согласно которому увеличение степени полинома можно прекратить без ущерба для точности описания данных.

 

Для решения этого вопроса производятся следующие вычисления.

1. Вычисляются сумы квадратов, приходящиеся на каждую компоненту уравнения. Вычисления производятся по формуле:

 

SSk = SSk-1 – SSk, (7.9)

где

SS – остаточная сумма квадратов;

k – степень полинома.

Для данного примера:

 

Степень уравнения          
Остаточная сумма квадратов          
Сумма квадратов, приходящаяся на компоненту уравнения          

 

2. Определяются числа степеней свободы для компонент уравнения остаточной суммы квадратов.

Для каждой компоненты это число равно 1, а для остаточной суммы вычисляется по формуле:

f = N – k – 1, (7.10)

где

N – общее число измерений;

k – количество коэффициентов в уравнении.

 

Для данного примера:

 

Степень уравнения          
Число степеней свободы, для компоненты          
Число степеней свободы на остаточную сумму квадратов (ошибки)          

 

3. Определяются величины дисперсий для компоненты и ошибки текущей степени уравнения.

Вычисления производятся по формуле:

 

s2 = SS / f. (7.11)

Для данного примера:

 

Степень уравнения          
Дисперсия для компоненты          
Дисперсия для ошибки   571,42 25,83 30,4 37,5

 

4. Для каждой компоненты вычисляется критерий Фишера.

Вычисления производятся по формуле:

 

F = s2k / s2e, (7.12)

где

s2k – дисперсия компоненты;

s2e – дисперсия ошибки.

 

Для данного примера:

 

Степень уравнения          
F-отношение   10,5 148,84 0,098 0,0533

 

5. Для каждой компоненты определяются критические значения критерия Фишера.

Эти значения вычисляются с помощью встроенной в Excel функции FРАСПОБР.

Аргументами этой функции являются:

а) уровень значимости.

Если мы хотим сделать свои выводы с надежность 95%, то его значение должно быть равно 0,05.

б) число степеней свободы для числителя.

У нас при вычислении F-отношения в числителе находилась дисперсия компоненты, число степеней свободы которой всегда равно 1.

в) число степеней свободы для знаменателя.

Здесь указывается число степеней свободы для ошибки.

 

В результате всех вычислений должна получиться следующая сводная таблица.

 

Степень уравнения          
Остаточная сумма квадратов          
Сумма квадратов, приходящаяся на компоненту уравнения          
Число степеней свободы, для компоненты          
Число степеней свободы для остаточной суммы квадратов          
Дисперсия для компоненты          
Дисперсия для ошибки   571,42 25,83 30,4 37,5
F-отношение   10,5 148,84 0,098 0,0533
F критическое   5,59 5,98 6,608 7,7086

 

Для решения вопроса о статистической значимости компонент уравнения производится сравнение вычисленных значений критерия Фишера с критическими.

Если вычисленное значение больше критического, компонента признается статистически значимой при выбранном уровне надежности. В противном случае компонента признается статистически не значимой.

В данном примере статистически существенными является компоненты первой и второй степени. Компоненты более высоких степеней не существенны. Поэтому для адекватного описания наших данных достаточно использовать уравнение второй степени следующего вида:

 

. (7.13)

 







Дата добавления: 2015-08-12; просмотров: 924. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия